skip to main content


Title: Detection and Forensics against Stealthy Data Falsification in Smart Metering Infrastructure
False power consumption data injected from compromised smart meters in Advanced Metering Infrastructure (AMI) of smart grids is a threat that negatively affects both customers and utilities. In particular, organized and stealthy adversaries can launch various types of data falsification attacks from multiple meters using smart or persistent strategies. In this paper, we propose a real time, two tier attack detection scheme to detect orchestrated data falsification under a sophisticated threat model in decentralized micro-grids. The first detection tier monitors whether the Harmonic to Arithmetic Mean Ratio of aggregated daily power consumption data is outside a normal range known as safe margin. To confirm whether discrepancies in the first detection tier is indeed an attack, the second detection tier monitors the sum of the residuals (difference) between the proposed ratio metric and the safe margin over a frame of multiple days. If the sum of residuals is beyond a standard limit range, the presence of a data falsification attack is confirmed. Both the ‘safe margins’ and the ‘standard limits’ are designed through a ‘system identification phase’, where the signature of proposed metrics under normal conditions are studied using real AMI micro-grid data sets from two different countries over multiple years. Subsequently, we show how the proposed metrics trigger unique signatures under various attacks which aids in attack reconstruction and also limit the impact of persistent attacks. Unlike metrics such as CUSUM or EWMA, the stability of the proposed metrics under normal conditions allows successful real time detection of various stealthy attacks with ultra-low false alarms.  more » « less
Award ID(s):
1818901
PAR ID:
10098813
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Dependable and Secure Computing
ISSN:
1545-5971
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Spurious power consumption data reported from compromised meters controlled by organized adversaries in the Advanced Metering Infrastructure (AMI) may have drastic consequences on a smart grid’s operations. While existing research on data falsification in smart grids mostly defends against isolated electricity theft, we introduce a taxonomy of various data falsification attack types, when smart meters are compromised by organized or strategic rivals. To counter these attacks, we first propose a coarse-grained and a fine-grained anomaly-based security event detection technique that uses indicators such as deviation and directional change in the time series of the proposed anomaly detection metrics to indicate: (i) occurrence, (ii) type of attack, and (iii) attack strategy used, collectively known as attack context . Leveraging the attack context information, we propose three attack response metrics to the inferred attack context: (a) an unbiased mean indicating a robust location parameter; (b) a median absolute deviation indicating a robust scale parameter; and (c) an attack probability time ratio metric indicating the active time horizon of attacks. Subsequently, we propose a trust scoring model based on Kullback-Leibler (KL) divergence, that embeds the appropriate unbiased mean, the median absolute deviation, and the attack probability ratio metric at runtime to produce trust scores for each smart meter. These trust scores help classify compromised smart meters from the non-compromised ones. The embedding of the attack context, into the trust scoring model, facilitates accurate and rapid classification of compromised meters, even under large fractions of compromised meters, generalize across various attack strategies and margins of false data. Using real datasets collected from two different AMIs, experimental results show that our proposed framework has a high true positive detection rate, while the average false alarm and missed detection rates are much lesser than 10% for most attack combinations for two different real AMI micro-grid datasets. Finally, we also establish fundamental theoretical limits of the proposed method, which will help assess the applicability of our method to other domains. 
    more » « less
  2. Smart water metering (SWM) infrastructure collects real-time water usage data that is useful for automated billing, leak detection, and forecasting of peak periods. Cyber/physical attacks can lead to data falsification on water usage data. This paper proposes a learning approach that converts smart water meter data into a Pythagorean mean-based invariant that is highly stable under normal conditions but deviates under attacks. We show how adversaries can launch deductive or camouflage attacks in the SWM infrastructure to gain benefits and impact the water distribution utility. Then, we apply a two-tier approach of stateless and stateful detection, reducing false alarms without significantly sacrificing the attack detection rate. We validate our approach using real-world water usage data of 92 households in Alicante, Spain for varying attack scales and strengths and prove that our method limits the impact of undetected attacks and expected time between consecutive false alarms. Our results show that even for low-strength, low-scale deductive attacks, the model limits the impact of an undetected attack to only 0.2199375 pounds and for high-strength, low-scale camouflage attack, the impact of an undetected attack was limited to 1.434375 pounds. 
    more » « less
  3. The bi-directional communication capabilities that emerged into the smart power grid play a critical role in the grid's secure, reliable and efficient operation. Nevertheless, the data communication functionalities introduced to Advanced Metering Infrastructure (AMI) nodes end the grid's isolation, and expose the network into an array of cyber-security threats that jeopardize the grid's stability and availability. For instance, malware amenable to inject false data into the AMI can compromise the grid's state estimation process and lead to catastrophic power outages. In this paper, we explore several statistical spatio-temporal models for efficient diagnosis of false data injection attacks in smart grids. The proposed methods leverage the data co-linearities that naturally arise in the AMI measurements of the electric network to provide forecasts for the network's AMI observations, aiming to quickly detect the presence of “bad data”. We evaluate the proposed approaches with data tampered with stealth attacks compiled via three different attack strategies. Further, we juxtapose them against two other forecasting-aided detection methods appearing in the literature, and discuss the trade-offs of all techniques when employed on real-world power grid data, obtained from a large university campus. 
    more » « less
  4. Smart grids are facing many challenges including cyber-attacks which can cause devastating damages to the grids. Existing machine learning based approaches for detecting cyber-attacks in smart grids are mainly based on supervised learning, which needs representative instances from various attack types to obtain good detection models. In this paper, we investigated semi-supervised outlier detection algorithms for this problem which only use instances of normal events for model training. Data collected by phasor measurement units (PMUs) was used for training the detection model. The semi-supervised outlier detection algorithms were augmented with deep feature extraction for enhanced detection performance. Our results show that semi-supervised outlier detection algorithms can perform better than popular supervised algorithms. Deep feature extraction can significantly improve the performance of semi-supervised algorithms for detecting cyber-attacks in smart grids 
    more » « less
  5. null (Ed.)
    Smart grids integrate advanced information and communication technologies (ICTs) into traditional power grids for more efficient and resilient power delivery and management, but also introduce new security vulnerabilities that can be exploited by adversaries to launch cyber attacks, causing severe consequences such as massive blackout and infrastructure damages. Existing machine learning-based methods for detecting cyber attacks in smart grids are mostly based on supervised learning, which need the instances of both normal and attack events for training. In addition, supervised learning requires that the training dataset includes representative instances of various types of attack events to train a good model, which is sometimes hard if not impossible. This paper presents a new method for detecting cyber attacks in smart grids using PMU data, which is based on semi-supervised anomaly detection and deep representation learning. Semi-supervised anomaly detection only employs the instances of normal events to train detection models, making it suitable for finding unknown attack events. A number of popular semi-supervised anomaly detection algorithms were investigated in our study using publicly available power system cyber attack datasets to identify the best-performing ones. The performance comparison with popular supervised algorithms demonstrates that semi-supervised algorithms are more capable of finding attack events than supervised algorithms. Our results also show that the performance of semi-supervised anomaly detection algorithms can be further improved by augmenting with deep representation learning. 
    more » « less