skip to main content


Title: Attack Context Embedded Data Driven Trust Diagnostics in Smart Metering Infrastructure
Spurious power consumption data reported from compromised meters controlled by organized adversaries in the Advanced Metering Infrastructure (AMI) may have drastic consequences on a smart grid’s operations. While existing research on data falsification in smart grids mostly defends against isolated electricity theft, we introduce a taxonomy of various data falsification attack types, when smart meters are compromised by organized or strategic rivals. To counter these attacks, we first propose a coarse-grained and a fine-grained anomaly-based security event detection technique that uses indicators such as deviation and directional change in the time series of the proposed anomaly detection metrics to indicate: (i) occurrence, (ii) type of attack, and (iii) attack strategy used, collectively known as attack context . Leveraging the attack context information, we propose three attack response metrics to the inferred attack context: (a) an unbiased mean indicating a robust location parameter; (b) a median absolute deviation indicating a robust scale parameter; and (c) an attack probability time ratio metric indicating the active time horizon of attacks. Subsequently, we propose a trust scoring model based on Kullback-Leibler (KL) divergence, that embeds the appropriate unbiased mean, the median absolute deviation, and the attack probability ratio metric at runtime to produce trust scores for each smart meter. These trust scores help classify compromised smart meters from the non-compromised ones. The embedding of the attack context, into the trust scoring model, facilitates accurate and rapid classification of compromised meters, even under large fractions of compromised meters, generalize across various attack strategies and margins of false data. Using real datasets collected from two different AMIs, experimental results show that our proposed framework has a high true positive detection rate, while the average false alarm and missed detection rates are much lesser than 10% for most attack combinations for two different real AMI micro-grid datasets. Finally, we also establish fundamental theoretical limits of the proposed method, which will help assess the applicability of our method to other domains.  more » « less
Award ID(s):
2030611 2017289
NSF-PAR ID:
10296895
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Privacy and Security
Volume:
24
Issue:
2
ISSN:
2471-2566
Page Range / eLocation ID:
1 to 36
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. False power consumption data injected from compromised smart meters in Advanced Metering Infrastructure (AMI) of smart grids is a threat that negatively affects both customers and utilities. In particular, organized and stealthy adversaries can launch various types of data falsification attacks from multiple meters using smart or persistent strategies. In this paper, we propose a real time, two tier attack detection scheme to detect orchestrated data falsification under a sophisticated threat model in decentralized micro-grids. The first detection tier monitors whether the Harmonic to Arithmetic Mean Ratio of aggregated daily power consumption data is outside a normal range known as safe margin. To confirm whether discrepancies in the first detection tier is indeed an attack, the second detection tier monitors the sum of the residuals (difference) between the proposed ratio metric and the safe margin over a frame of multiple days. If the sum of residuals is beyond a standard limit range, the presence of a data falsification attack is confirmed. Both the ‘safe margins’ and the ‘standard limits’ are designed through a ‘system identification phase’, where the signature of proposed metrics under normal conditions are studied using real AMI micro-grid data sets from two different countries over multiple years. Subsequently, we show how the proposed metrics trigger unique signatures under various attacks which aids in attack reconstruction and also limit the impact of persistent attacks. Unlike metrics such as CUSUM or EWMA, the stability of the proposed metrics under normal conditions allows successful real time detection of various stealthy attacks with ultra-low false alarms. 
    more » « less
  2. Anomaly-based attack detection methods that rely on learning the benign profile of operation are commonly used for identifying data falsification attacks and faults in cyber-physical systems. However, most works do not assume the presence of attacks while training the anomaly detectors- and their impact on eventual anomaly detection performance during the test set. Some robust learning methods overcompensate mitigation which leads to increased false positives in the absence of attacks/threats during training. To achieve this balance, this paper proposes a framework to enhance the robustness of previous anomaly detection frameworks in smart living applications, by introducing three profound design changes for threshold learning of time series anomaly detectors:(1) Tukey bi-weight loss function instead of square loss function (2) adding quantile weights to regression errors of Tukey (3) modifying the definition of empirical cost function from MSE to the harmonic mean of quantile weighted Tukey losses. We show that these changes mitigate performance degradation in anomaly detectors caused by untargeted poisoning attacks during training- while is simultaneously able to prevent false alarms in the absence of such training set attacks. We evaluate our work using a proof of concept that uses state-of-the-art anomaly detection in smart living CPS that detects false data injection in smart metering. 
    more » « less
  3. Smart water metering (SWM) infrastructure collects real-time water usage data that is useful for automated billing, leak detection, and forecasting of peak periods. Cyber/physical attacks can lead to data falsification on water usage data. This paper proposes a learning approach that converts smart water meter data into a Pythagorean mean-based invariant that is highly stable under normal conditions but deviates under attacks. We show how adversaries can launch deductive or camouflage attacks in the SWM infrastructure to gain benefits and impact the water distribution utility. Then, we apply a two-tier approach of stateless and stateful detection, reducing false alarms without significantly sacrificing the attack detection rate. We validate our approach using real-world water usage data of 92 households in Alicante, Spain for varying attack scales and strengths and prove that our method limits the impact of undetected attacks and expected time between consecutive false alarms. Our results show that even for low-strength, low-scale deductive attacks, the model limits the impact of an undetected attack to only 0.2199375 pounds and for high-strength, low-scale camouflage attack, the impact of an undetected attack was limited to 1.434375 pounds. 
    more » « less
  4. The bi-directional communication capabilities that emerged into the smart power grid play a critical role in the grid's secure, reliable and efficient operation. Nevertheless, the data communication functionalities introduced to Advanced Metering Infrastructure (AMI) nodes end the grid's isolation, and expose the network into an array of cyber-security threats that jeopardize the grid's stability and availability. For instance, malware amenable to inject false data into the AMI can compromise the grid's state estimation process and lead to catastrophic power outages. In this paper, we explore several statistical spatio-temporal models for efficient diagnosis of false data injection attacks in smart grids. The proposed methods leverage the data co-linearities that naturally arise in the AMI measurements of the electric network to provide forecasts for the network's AMI observations, aiming to quickly detect the presence of “bad data”. We evaluate the proposed approaches with data tampered with stealth attacks compiled via three different attack strategies. Further, we juxtapose them against two other forecasting-aided detection methods appearing in the literature, and discuss the trade-offs of all techniques when employed on real-world power grid data, obtained from a large university campus. 
    more » « less
  5. Falsified data from compromised Phasor Measurement Units (PMUs) in a smart grid induce Energy Management Systems (EMS) to have an inaccurate estimation of the state of the grid, disrupting various operations of the power grid. Moreover, the PMUs deployed at the distribution layer of a smart grid show dynamic fluctuations in their data streams, which make it extremely challenging to design effective learning frameworks for anomaly based attack detection. In this paper, we propose a noise resilient learning framework for anomaly based attack detection specifically for distribution layer PMU infrastructure, that show real time indicators of data falsifications attacks while offsetting the effect of false alarms caused by the noise. Specifically, we propose a feature extraction framework that uses some Pythagorean Means of the active power from a cluster of PMUs, reducing multi-dimensional nature of the PMU data streams via quick big data summarization. We also propose a robust and noise resilient methodology for learning thresholds based on generalized robust estimation theory of our invariant feature. We experimentally validate our approach and demonstrate improved reliability performance using two completely different datasets collected from real distribution level PMU infrastructures. 
    more » « less