skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chordal Decomposition in Rank Minimized Semidefinite Programs with Applications to Subspace Clustering
Semidefinite programs (SDPs) often arise in relaxations of some NP-hard problems, and if the solution of the SDP obeys certain rank constraints, the relaxation will be tight. Decomposition methods based on chordal sparsity have already been applied to speed up the solution of sparse SDPs, but methods for dealing with rank constraints are underdeveloped. This paper leverages a minimum rank completion result to decompose the rank constraint on a single large matrix into multiple rank constraints on a set of smaller matrices. The re-weighted heuristic is used as a proxy for rank, and the specific form of the heuristic preserves the sparsity pattern between iterations. Implementations of rank-minimized SDPs through interior-point and first-order algorithms are discussed. The problem of subspace clustering is used to demonstrate the computational improvement of the proposed method.  more » « less
Award ID(s):
1638234 1808381 1814631 1646121
PAR ID:
10176075
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 IEEE 58th Conference on Decision and Control (CDC)
Page Range / eLocation ID:
4916 to 4921
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Semidefinite programs (SDP) are important in learning and combinatorial optimization with numerous applications. In pursuit of low-rank solutions and low complexity algorithms, we consider the Burer–Monteiro factorization approach for solving SDPs. For a large class of SDPs, upon random perturbation of the cost matrix, with high probability, we show that all approximate second-order stationary points are approximate global optima for the penalty formulation of appropriately rank-constrained SDPs, as long as the number of constraints scales sub-quadratically with the desired rank. Our result is based on a simple penalty function formulation of the rank-constrained SDP along with a smoothed analysis to avoid worst-case cost matrices. We particularize our results to two applications, namely, Max-Cut and matrix completion. 
    more » « less
  2. This paper considers the relationship between semidefinite programs (SDPs), matrix rank, and maximum cuts of graphs. Utilizing complementary slackness conditions for SDPs, we investigate when the rank 1 feasible solution corresponding to a max cut is the unique optimal solution to the Goemans-Williamson max cut SDP by showing the existence of an optimal dual solution with rank n-1 . Our results consider connected bipartite graphs and graphs with multiple max cuts. We conclude with a conjecture for general graphs. 
    more » « less
  3. The minimum-gain eigenvalue assignment/pole placement problem (MGEAP) is a classical problem in LTI systems with static state feedback. In this paper, we study the MGEAP when the state feedback has arbitrary sparsity constraints. We formulate the sparse MGEAP problem as an equality-constrained optimization problem and present an analytical characterization of its locally optimal solution in terms of eigenvector matrices of the closed loop system. This result is used to provide a geometric interpretation of the solution of the non-sparse MGEAP, thereby providing additional insights for this classical problem. Further, we develop an iterative projected gradient descent algorithm to obtain local solutions for the sparse MGEAP using a parametrization based on the Sylvester equation. We present a heuristic algorithm to compute the projections, which also provides a novel method to solve the sparse EAP. Also, a relaxed version of the sparse MGEAP is presented and an algorithm is developed to obtain approximately sparse local solutions to the MGEAP. Finally, numerical studies are presented to compare the properties of the algorithms, which suggest that the proposed projec 
    more » « less
  4. A weakly infeasible semidefinite program (SDP) has no feasible solution, but it has approximate solutions whose constraint violation is arbitrarily small. These SDPs are ill-posed and numerically often unsolvable. They are also closely related to "bad" linear projections that map the cone of positive semidefinite matrices to a nonclosed set. We describe a simple echelon form of weakly infeasible SDPs with the following properties: (i) it is obtained by elementary row operations and congruence transformations, (ii) it makes weak infeasibility evident, and (iii) it permits us to construct any weakly infeasible SDP or bad linear projection by an elementary combinatorial algorithm. Based on our echelon form we generate a challenging library of weakly infeasible SDPs. Finally, we show that some SDPs in the literature are in our echelon form, for example, the SDP from the sum-of-squares relaxation of minimizing the famous Motzkin polynomial. 
    more » « less
  5. We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{-10} + sqrt{n} epsilon^{-12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The second algorithm assumes a fully quantum input model in which the input matrices are given as quantum states. We show that its run time is O~(sqrt{m}+poly(r))*poly(log m,log n,B,epsilon^{-1}), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n and polynomially in r. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state rho with rank at most r, we show we can find in time sqrt{m}*poly(log m,log n,r,epsilon^{-1}) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as rho on the m measurements, up to error epsilon. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes' principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians, with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum principal component analysis. We also develop a "fast" quantum OR lemma with a quadratic improvement in gate complexity over the construction of Harrow et al. [Harrow et al., 2017]. We believe both techniques might be of independent interest. 
    more » « less