skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Symmetric shear banding and swarming vortices in bacterial superfluids
Bacterial suspensions—a premier example of active fluids—show an unusual response to shear stresses. Instead of increasing the viscosity of the suspending fluid, the emergent collective motions of swimming bacteria can turn a suspension into a superfluid with zero apparent viscosity. Although the existence of active superfluids has been demonstrated in bulk rheological measurements, the microscopic origin and dynamics of such an exotic phase have not been experimentally probed. Here, using high-speed confocal rheometry, we study the dynamics of concentrated bacterial suspensions under simple planar shear. We find that bacterial superfluids under shear exhibit unusual symmetric shear bands, defying the conventional wisdom on shear banding of complex fluids, where the formation of steady shear bands necessarily breaks the symmetry of unsheared samples. We propose a simple hydrodynamic model based on the local stress balance and the ergodic sampling of nonequilibrium shear configurations, which quantitatively describes the observed symmetric shear-banding structure. The model also successfully predicts various interesting features of swarming vortices in stationary bacterial suspensions. Our study provides insights into the physical properties of collective swarming in active fluids and illustrates their profound influences on transport processes.  more » « less
Award ID(s):
1702352
PAR ID:
10099040
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
28
ISSN:
0027-8424
Page Range / eLocation ID:
7212 to 7217
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As a paradigmatic model of active fluids, bacterial suspensions show intriguing rheological responses drastically different from their counterpart colloidal suspensions. Although the flow of bulk bacterial suspensions has been extensively studied, the rheology of bacterial suspensions under confinement has not been experimentally explored. Here, using a microfluidic viscometer, we systematically measure the rheology of dilute Escherichia coli suspensions under different degrees of confinement. Our study reveals a strong confinement effect: the viscosity of bacterial suspensions decreases substantially when the confinement scale is comparable or smaller than the run length of bacteria. Moreover, we also investigate the microscopic dynamics of bacterial suspensions including velocity profiles, bacterial density distributions, and single bacterial dynamics in shear flows. These measurements allow us to construct a simple heuristic model based on the boundary layer of upstream swimming bacteria near confining walls, which qualitatively explains our experimental observations. Our study sheds light on the influence of the boundary layer of collective bacterial motions on the flow of confined bacterial suspensions. Our results provide a benchmark for testing different rheological models of active fluids and are useful for understanding the transport of microorganisms in confined geometries. 
    more » « less
  2. Abstract Bacteria are among the oldest and most abundant species on Earth. Bacteria successfully colonize diverse habitats and play a significant role in the oxygen, carbon, and nitrogen cycles. They also form human and animal microbiota and may become sources of pathogens and a cause of many infectious diseases. Suspensions of motile bacteria constitute one of the most studied examples of active matter: a broad class of non-equilibrium systems converting energy from the environment (e.g., chemical energy of the nutrient) into mechanical motion. Concentrated bacterial suspensions, often termed active fluids, exhibit complex collective behavior, such as large-scale turbulent-like motion (so-called bacterial turbulence) and swarming. The activity of bacteria also affects the effective viscosity and diffusivity of the suspension. This work reports on the progress in bacterial active matter from the physics viewpoint. It covers the key experimental results, provides a critical assessment of major theoretical approaches, and addresses the effects of visco-elasticity, liquid crystallinity, and external confinement on collective behavior in bacterial suspensions. 
    more » « less
  3. Abstract Bacteria form human and animal microbiota. They are the leading causes of many infections and constitute an important class of active matter. Concentrated bacterial suspensions exhibit large-scale turbulent-like locomotion and swarming. While the collective behavior of bacteria in Newtonian fluids is relatively well understood, many fundamental questions remain open for complex fluids. Here, we report on the collective bacterial motion in a representative biological non-Newtonian viscoelastic environment exemplified by mucus. Experiments are performed with synthetic porcine gastric mucus, natural cow cervical mucus, and a Newtonian-like polymer solution. We have found that an increase in mucin concentration and, correspondingly, an increase in the suspension’s elasticity monotonously increases the length scale of collective bacterial locomotion. On the contrary, this length remains practically unchanged in Newtonian polymer solution in a wide range of concentrations. The experimental observations are supported by computational modeling. Our results provide insight into how viscoelasticity affects the spatiotemporal organization of bacterial active matter. They also expand our understanding of bacterial colonization of mucosal surfaces and the onset of antibiotic resistance due to swarming. 
    more » « less
  4. Abstract The rheology of lavas and magmas exerts a strong control on the dynamics and hazards posed by volcanic eruptions. Magmas and lavas are complex mixtures of silicate melt, suspended crystals, and gas bubbles. To improve the understanding of the dynamics and effective rheology of magmas and lavas, we performed dam‐break flow experiments using suspensions of silicone oil, sesame seeds, and N2O bubbles. Experiments were run inside a magnetic resonance imaging (MRI) scanner to provide imaging of the flow interior. We varied the volume fraction of sesame seeds between 0 and 0.48, and of bubbles between 0 and 0.21. MRI phase‐contrast velocimetry was used to measure liquid velocity. We fit an effective viscosity to the velocity data by approximating the stress using lubrication theory and the imaged shape of the free surface. In experiments with both particles and bubbles (three‐phase suspensions), we observed shear banding in which particle‐poor regions deform with a lower effective viscosity and dominate flow propagation speed. Our observations demonstrate the importance of considering variations in phase distributions within magmatic fluids and their implications on the dynamics of volcanic eruptions. 
    more » « less
  5. Giant number fluctuations are often considered as a hallmark of the emergent nonequilibrium dynamics of active fluids. However, these anomalous density fluctuations have only been reported experimentally in two-dimensional dry active systems heretofore. Here, we investigate density fluctuations of bulk Escherichia coli suspensions, a paradigm of three-dimensional (3D) wet active fluids. Our experiments demonstrate the existence and quantify the scaling relation of giant number fluctuations in 3D bacterial suspensions. Surprisingly, the anomalous scaling persists at small scales in low-concentration suspensions well before the transition to active turbulence, reflecting the long-range nature of hydrodynamic interactions of 3D wet active fluids. To illustrate the origin of the density fluctuations, we measure the energy spectra of suspension flows and explore the density–energy coupling in both the steady and transient states of active turbulence. A scale-invariant density-independent correlation between density fluctuations and energy spectra is uncovered across a wide range of length scales. In addition, our experiments show that the energy spectra of bacterial turbulence exhibit the scaling of 3D active nematic fluids, challenging the common view of dense bacterial suspensions as active polar fluids. 
    more » « less