Inspired by nature and motivated by a lack of top-down tools for precise nanoscale manufacture, self-assembly is a bottom-up process where simple, unorganized components autonomously combine to form larger more complex structures. Such systems hide rich algorithmic properties - notably, Turing universality - and a self-assembly system can be seen as both the object to be manufactured as well as the machine controlling the manufacturing process. Thus, a benchmark problem in self-assembly is the unique assembly of shapes: to design a set of simple agents which, based on aggregation rules and random movement, self-assemble into a particular shape and nothing else. We use a popular model of self-assembly, the 2-handed or hierarchical tile assembly model, and allow the existence of repulsive forces, which is a well-studied variant. The technique utilizes a finely-tuned temperature (the minimum required affinity required for aggregation of separate complexes). We show that calibrating the temperature and the strength of the aggregation between the tiles, one can encode the shape to be assembled without increasing the number of distinct tile types. Precisely, we show one tile set for which the following holds: for any finite connected shape S, there exists a setting of binding strengths between tiles and a temperature under which the system uniquely assembles S at some scale factor. Our tile system only uses one repulsive glue type and the system is growth-only (it produces no unstable assemblies). The best previous unique shape assembly results in tile assembly models use O(K(S)/(log K(S))) distinct tile types, where K(S) is the Kolmogorov (descriptional) complexity of the shape S.
more »
« less
Nearly Constant Tile Complexity for any Shape in Two-Handed Tile Assembly
Tile self-assembly is a well-studied theoretical model of geometric computation based on nanoscale DNA-based molecular systems. Here, we study the two-handed tile self-assembly model or 2HAM at general temperatures, in contrast with prior study limited to small constant temperatures, leading to surprising results. We obtain constructions at larger (i.e., hotter) temperatures that disprove prior conjectures and break well-known bounds for low-temperature systems via new methods of temperature-encoded information. In particular, for all n∈N , we assemble n×n squares using O(2log∗n) tile types, thus breaking the well-known information theoretic lower bound of Rothemund and Winfree. Using this construction, we then show how to use the temperature to encode general shapes and construct them at scale with O(2log∗K) tiles, where K denotes the Kolmogorov complexity of the target shape. Following, we refute a long-held conjecture by showing how to use temperature to construct n×O(1) rectangles using only O(logn/loglogn) tile types. We also give two small systems to generate nanorulers of varying length based solely on varying the system temperature. These results constitute the first real demonstration of the power of high temperature systems for tile assembly in the 2HAM. This leads to several directions for future explorations which we discuss in the conclusion.
more »
« less
- Award ID(s):
- 1817602
- PAR ID:
- 10099123
- Date Published:
- Journal Name:
- Algorithmica
- ISSN:
- 1432-0541
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many models of self-assembly have been shown to be capable of performing computation. Tile Automata was recently introduced combining features of both Celluar Automata and the 2-Handed Model of self-assembly both capable of universal computation. In this work we study the complexity of Tile Automata utilizing features inherited from the two models mentioned above. We first present a construction for simulating Turing Machines that performs both covert and fuel efficient computation. We then explore the capabilities of limited Tile Automata systems such as 1-Dimensional systems (all assemblies are of height $$1$$) and freezing Systems (tiles may not repeat states). Using these results we provide a connection between the problem of finding the largest uniquely producible assembly using $$n$$ states and the busy beaver problem for non-freezing systems and provide a freezing system capable of uniquely assembling an assembly whose length is exponential in the number of states of the system. We finish by exploring the complexity of the Unique Assembly Verification problem in Tile Automata with different limitations such as freezing and systems without the power of detachment.more » « less
-
Self-assembly is the process by which a system of particles randomly agitate and combine, through local interactions, to form larger complex structures. In this work, we fuse a particular well-studied generalization of tile assembly (the 2-Handed or Hierarchical Tile Assembly Model) with concepts from cellular automata such as states and state transitions characterized by neighboring states. This allows for a simplification of the concepts from active self-assembly, and gives us machinery to relate the disparate existing models. We show that this model, coined Tile Automata, is invariant with respect to freezing and non-freezing transition rules via a simulation theorem showing that any non-freezing tile automata system can be simulated by a freezing one. Freezing tile automata systems restrict state transitions such that each tile may visit a state only once, i.e., a tile may undergo only a finite number of transitions. We conjecture that this result can be used to show that the Signal-passing Tile Assembly Model is also invariant to this constraint via a series of simulation results between that model and the Tile Automata model. Further, we conjecture that this model can be used to consolidate the several oft-studied models of self-assembly wherein assemblies may break apart, such as the Signal-passing Tile Assembly Model, the negative-glue 2-Handed Tile Assembly Model, and the Size-Dependent Tile Assembly Model. Lastly, the Tile Automata model may prove useful in combining results in cellular automata with self-assembly.more » « less
-
Seki, Shinnosuke; Stewart, Jaimie Marie (Ed.)The abstract Tile Assembly Model (aTAM) provides an excellent foundation for the mathematical study of DNA-tile-based self-assembling systems, especially those wherein logic is embedded within the designs of the tiles so that they follow prescribed algorithms. While such algorithmic self-assembling systems are theoretically powerful, being computationally universal and capable of building complex shapes using information-theoretically optimal numbers of tiles, physical DNA-based implementations of these systems still encounter formidable error rates and undesired nucleation that hinder this theoretical potential. Slat-based self-assembly is a recent development wherein DNA forms long slats that combine together in 2 layers, rather than square tiles in a plane. In this approach, the length of the slats is key; while tiles typically only bind to 2 neighboring tiles at a time, slats may bind to dozens of other slats. This increased coordination between slats means that several mismatched slats must coincidentally meet in just the right way for errors to persist, unlike tiles where only a few are required. Consequently, while still a novel technology, large slat-based DNA constructions have been successfully implemented in the lab with resilience to many tile-based construction problems. These improved error characteristics come at a cost however, as slat-based systems are often more difficult to design and simulate than tile-based ones. Moreover, it has not been clear whether slats, with their larger sizes and different geometries, have the same theoretical capabilities as tiles. In this paper, we show that slats are capable of doing anything that tiles can, at least at scale. We demonstrate that any aTAM system may be converted to and simulated by an effectively equivalent system of slats. Furthermore, we show that these simulating slat systems can be made more efficiently, using shorter slats and a smaller scale factor, if the simulated tile system avoids certain uncommon growth patterns. Specifically, we consider 5 classes of aTAM systems with increasing complexity, from zig-zag systems which grow in a rigid pattern to the full class of all aTAM systems, and show how they may be converted to equivalent slat systems. We show that the simplest class may be simulated by slats at only a 2c × 2c scale, where c is the freely chosen coordination number of the slats, and further show that the full class of aTAM systems can be simulated at only a 5c × 5c scale. These results prove that slats have the full theoretical power of aTAM tiles while also providing constructions that are compact enough for potential DNA-based implementations of slat systems that are both capable of powerful algorithmic self-assembly and possessing of the strong error resilience of slats.more » « less
-
Meeks, Kitty; Scheideler, Christian (Ed.)The Tile Automata (TA) model describes self-assembly systems in which monomers can build structures and transition with an adjacent monomer to change their states. This paper shows that seeded TA is a non-committal intrinsically universal model of self-assembly. We present a single universal Tile Automata system containing approximately 4600 states that can simulate (a) the output assemblies created by any other Tile Automata system Γ, (b) the dynamics involved in building Γ’s assemblies, and (c) Γ’s internal state transitions. It does so in a non-committal way: it preserves the full non-deterministic dynamics of a tile’s potential attachment or transition by selecting its state in a single step, considering all possible outcomes until the moment of selection. The system uses supertiles, each encoding the complete system being simulated. The universal system builds supertiles from its seed, each representing a single tile in Γ, transferring the information to simulate Γ to each new tile. Supertiles may also asynchronously transition states according to the rules of Γ. This result also implies IU for pairwise asynchronous Cellular Automata.more » « less
An official website of the United States government

