Despite the importance of bulk lanthanide borides, nanoclusters of lanthanide and boron have rarely been investigated. Here we show that lanthanide–boron binary clusters, La 2 B x − , can form a new class of inverse-sandwich complexes, [Ln(η x -B x )Ln] − ( x = 7–9). Joint experimental and theoretical studies reveal that the monocyclic B x rings in the inverse sandwiches display similar bonding, consisting of three delocalized σ and three delocalized π bonds. Such monocyclic boron rings do not exist for bare boron clusters, but they are stabilized by the sandwiching lanthanide atoms. An electron counting rule is proposed to predict the sizes of the B x ring that can form stable inverse sandwiches. A unique (d-p)δ bond is found to play important roles in the stability of all three inverse-sandwich complexes.
more »
« less
La3B14–: An Inverse Triple-Decker Lanthanide Boron Cluster
We report the observation of the first inverse triple-decker complex in a tri-lanthanide-doped boron cluster. Photoelectron spectroscopy of La3B14– reveals well-resolved photodetachment transitions. Quantum chemical studies show that the most stable structure of the La3B14– cluster exhibits a tilted La–B8–La–B8–La inverse triple-decker structure with two conjoined B8 rings sharing a pair of B atoms due to strong inter-layer B–B bonding. The tilted structure enhances both B–B and B–La bonding, resulting in a highly stable inverse triple-decker structure. Theoretical calculations further show that multi-decker conjoined structures are viable as a new class of 1D lanthanide boron nanostructures.
more »
« less
- Award ID(s):
- 1763380
- PAR ID:
- 10099128
- Date Published:
- Journal Name:
- Chemical communications
- ISSN:
- 2050-5620
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While synthesizing a series of rhenium–lanthanide triple inverse sandwich complexes, we unexpectedly uncovered evidence for rare examples of end-on lanthanide dinitrogen coordination for certain heavy lanthanide elements as well as for uranium. We begin our report with the synthesis and characterization of a series of trirhenium triple inverse sandwich complexes with the early lanthanides, Ln[(μ-η5:η5-Cp)Re(BDI)]3(THF) (1-Ln, Ln = La, Ce, Pr, Nd, Sm; Cp = cyclopentadienide, BDI = N,N′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate). However, as we moved across the lanthanide series, we ran into an unexpected result for gadolinium in which we structurally characterized two products for gadolinium, namely, 1-Gd (analogous to 1-Ln) and a diazenido dirhenium double inverse sandwich complex Gd[(μ-η1:η1-N2)Re(η5-Cp)(BDI)][(μ-η5:η5-Cp)Re(BDI)]2(THF)2 (2-Gd). Evidence for analogues of 2-Gd was spectroscopically observed for other heavy lanthanides (2-Ln, Ln = Tb, Dy, Er), and, in the case of 2-Er, structurally authenticated. These complexes represent the first observed examples of heterobimetallic end-on lanthanide dinitrogen coordination. Density functional theory (DFT) calculations were utilized to probe relevant bonding interactions and reveal energetic differences between both the experimental and putative 1-Ln and 2-Ln complexes. We also present additional examples of novel end-on heterobimetallic lanthanide and actinide diazenido moieties in the erbium–rhenium complex (η8-COT)Er[(μ-η1:η1-N2)Re(η5-Cp)(BDI)](THF)(Et2O) (3-Er) and uranium–rhenium complex [Na(2.2.2-cryptand)][(η5-C5H4SiMe3)3U(μ-η1:η1-N2)Re(η5-Cp)(BDI)] (4-U). Finally, we expand the scope of rhenium inverse sandwich coordination by synthesizing divalent double inverse sandwich complex Yb[(μ-η5:η5-Cp)Re(BDI)]2(THF)2 (5-Yb), as well as base-free, homoleptic rhenium–rare earth triple inverse sandwich complex Y[(μ-η5:η5-Cp)Re(BDI)]3 (6-Y).more » « less
-
Because of their interesting structures and bonding and potentials as motifs for new nanomaterials, size-selected boron clusters have received tremendous interest in recent years. In particular, boron cluster anions (B n − ) have allowed systematic joint photoelectron spectroscopy and theoretical studies, revealing predominantly two-dimensional structures. The discovery of the planar B 36 cluster with a central hexagonal vacancy provided the first experimental evidence of the viability of 2D borons, giving rise to the concept of borophene. The finding of the B 40 cage cluster unveiled the existence of fullerene-like boron clusters (borospherenes). Metal-doping can significantly extend the structural and bonding repertoire of boron clusters. Main-group metals interact with boron through s/p orbitals, resulting in either half-sandwich-type structures or substitutional structures. Transition metals are more versatile in bonding with boron, forming a variety of structures including half-sandwich structures, metal-centered boron rings, and metal-centered boron drums. Transition metal atoms have also been found to be able to be doped into the plane of 2D boron clusters, suggesting the possibility of metalloborophenes. Early studies of di-metal-doped boron clusters focused on gold, revealing ladder-like boron structures with terminal gold atoms. Recent observations of highly symmetric Ta 2 B 6 − and Ln 2 B n − ( n = 7–9) clusters have established a family of inverse sandwich structures with monocyclic boron rings stabilized by two metal atoms. The study of size-selected boron and doped-boron clusters is a burgeoning field of research. Further investigations will continue to reveal more interesting structures and novel chemical bonding, paving the foundation for new boron-based chemical compounds and nanomaterials.more » « less
-
null (Ed.)While rare-earth borides represent a class of important materials in modern industries, there are few fundamental researches on their electronic structures and physicochemical properties. Recently we have performed combined experimental and theoretical studies on rare-earth boron clusters and their cluster-assembled complexes, revealing a series of rare-earth inverse sandwich clusters with fascinating electronic structures and chemical bonding patterns. In this overview article, we summarize recent progresses in this area and provide a perspective view on the future development of rare-earth boride clusters. Understanding the electronic structures of these clusters helps to design materials of f-element (lanthanide and actinide) borides with critical physiochemical properties.more » « less
-
Abstract Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O−[Bi≡B−B≡O]−in which both boron atoms can be viewed as sp‐hybridized and the [B−BO]−fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2O−and ReB2O−and investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2O−has a closed‐shell bent structure (Cs,1A′) with BO−coordinated to an Ir≡B unit, (−OB)Ir≡B, whereas ReB2O−is linear (C∞v,3Σ−) with an electron‐precise Re≡B triple bond, [Re≡B−B≡O]−. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems.more » « less
An official website of the United States government

