skip to main content


Title: Recent Progresses in the Investigation of Rare-Earth Boron Inverse Sandwich Clusters
While rare-earth borides represent a class of important materials in modern industries, there are few fundamental researches on their electronic structures and physicochemical properties. Recently we have performed combined experimental and theoretical studies on rare-earth boron clusters and their cluster-assembled complexes, revealing a series of rare-earth inverse sandwich clusters with fascinating electronic structures and chemical bonding patterns. In this overview article, we summarize recent progresses in this area and provide a perspective view on the future development of rare-earth boride clusters. Understanding the electronic structures of these clusters helps to design materials of f-element (lanthanide and actinide) borides with critical physiochemical properties.  more » « less
Award ID(s):
1763380
NSF-PAR ID:
10296219
Author(s) / Creator(s):
Date Published:
Journal Name:
Jiegou huaxue
Volume:
39
Issue:
6
ISSN:
0254-5861
Page Range / eLocation ID:
1009-1018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transition-metal and rare-earth borides are of considerable interest due to their electronic, mechanical, and magnetic properties as well as their structural stability under extreme conditions. Here, we report on a series of high-pressure Raman and x-ray diffraction experiments on the cubic rare-earth hexaboride EuB6 to an ultrahigh pressure of 187 GPa in a diamond anvil cell. In EuB6, divalent europium ions occupy the corners of the cubic structure, which encloses a rigid boron-bonded cage. So far, no structural phase transitions have been reported, while the nanoindentation studies indicate amorphization in nanoscale shear bands during plastic deformation. Our x-ray diffraction studies have revealed that the ambient cubic phase of EuB6 shows broadening and splitting of diffraction peaks starting at 72 GPa and the broadening continuing to 187 GPa. The high-pressure phase is recovered on decompression, and the Raman spectroscopy of the recovered sample from 187 GPa shows a downward frequency shift and broadening of T2g, Eg, and A1g modes of boron octahedron. The density functional theory simulations of EuB6 at 100 GPa have identified five possible lowest energy crystal structures. The experimental x-ray diffraction data at high pressures is compared with the theoretical predictions and the role of structural distortions induced by shear stresses is also discussed.

     
    more » « less
  2. We develop an open-access database that provides a large array of datasets specialized for magnetic compounds as well as magnetic clusters. Our focus is on rare-earth-free magnets. Available datasets include (i) crystallography, (ii) thermodynamic properties, such as the formation energy, and (iii) magnetic properties that are essential for magnetic-material design. Our database features a large number of stable and metastable structures discovered through our adaptive genetic algorithm (AGA) searches. Many of these AGA structures have better magnetic properties when compared to those of the existing rare-earth-free magnets and the theoretical structures in other databases. Our database places particular emphasis on site-specific magnetic data, which are obtained by high-throughput first-principles calculations. Such site-resolved data are indispensable for machine-learning modeling. We illustrate how our data-intensive methods promote efficiency of the experimental discovery of new magnetic materials. Our database provides massive datasets that will facilitate an efficient computational screening, machine-learning-assisted design, and the experimental fabrication of new promising magnets. 
    more » « less
  3. null (Ed.)
    Accurate density functional theory calculations of the interrelated properties of thermoelectric materials entail high computational cost, especially as crystal structures increase in complexity and size. New methods involving ab initio scattering and transport (AMSET) and compressive sensing lattice dynamics are used to compute the transport properties of quaternary CaAl 2 Si 2 -type rare-earth phosphides RECuZnP 2 (RE = Pr, Nd, Er), which were identified to be promising thermoelectrics from high-throughput screening of 20 000 disordered compounds. Experimental measurements of the transport properties agree well with the computed values. Compounds with stiff bulk moduli (>80 GPa) and high speeds of sound (>3500 m s −1 ) such as RECuZnP 2 are typically dismissed as thermoelectric materials because they are expected to exhibit high lattice thermal conductivity. However, RECuZnP 2 exhibits not only low electrical resistivity, but also low lattice thermal conductivity (∼1 W m −1 K −1 ). Contrary to prior assumptions, polar-optical phonon scattering was revealed by AMSET to be the primary mechanism limiting the electronic mobility of these compounds, raising questions about existing assumptions of scattering mechanisms in this class of thermoelectric materials. The resulting thermoelectric performance ( zT of 0.5 for ErCuZnP 2 at 800 K) is among the best observed in phosphides and can likely be improved with further optimization. 
    more » « less
  4. Abstract

    Multiple principal element or high-entropy materials have recently been studied in the two-dimensional (2D) materials phase space. These promising classes of materials combine the unique behavior of solid-solution and entropy-stabilized systems with high aspect ratios and atomically thin characteristics of 2D materials. The current experimental space of these materials includes 2D transition metal oxides, carbides/carbonitrides/nitrides (MXenes), dichalcogenides, and hydrotalcites. However, high-entropy 2D materials have the potential to expand into other types, such as 2D metal-organic frameworks, 2D transition metal carbo-chalcogenides, and 2D transition metal borides (MBenes). Here, we discuss the entropy stabilization from bulk to 2D systems, the effects of disordered multi-valent elements on lattice distortion and local electronic structures and elucidate how these local changes influence the catalytic and electrochemical behavior of these 2D high-entropy materials. We also provide a perspective on 2D high-entropy materials research and its challenges and discuss the importance of this emerging field of nanomaterials in designing tunable compositions with unique electronic structures for energy, catalytic, electronic, and structural applications.

     
    more » « less
  5. Nonlinear optical (NLO) crystals with superior properties are significant for advancing laser technologies and applications. Introducing rare earth metals to borates is a promising and effective way to modify the electronic structure of a crystal to improve its optical properties in the visible and ultraviolet range. In this work, we computationally discover inversion symmetry breaking in EuBa3(B3O6)3, which was previously identified as centric, and demonstrate noncentrosymmetry via synthesizing single crystals for the first time by the floating zone method. We determine the correct space group to beP6¯. The material has a large direct bandgap of 5.56 eV and is transparent down to 250 nm. The complete anisotropic linear and nonlinear optical properties were also investigated with ad11of ∼0.52 pm/V for optical second harmonic generation. Further, it is Type I and Type II phase matchable. This work suggests that rare earth metal borates are an excellent crystal family for exploring future deep ultraviolet (DUV) NLO crystals. It also highlights how first principles computations combined with experiments can be used to identify noncentrosymmetric materials that have been wrongly assigned to be centrosymmetric.

     
    more » « less