Recently, Deep Image Prior (DIP) has emerged as an effective unsupervised one-shot learner, delivering competitive results across various image recovery problems. This method only requires the noisy measurements and a forward operator, relying solely on deep networks initialized with random noise to learn and restore the structure of the data. However, DIP is notorious for its vulnerability to overfitting due to the overparameterization of the network. Building upon insights into the impact of the DIP input and drawing inspiration from the gradual denoising process in cutting-edge diffusion models, we introduce Autoencoding Sequential DIP (aSeqDIP) for image reconstruction. This method progressively denoises and reconstructs the image through a sequential optimization of network weights. This is achieved using an input-adaptive DIP objective, combined with an autoencoding regularization term. Compared to diffusion models, our method does not require training data and outperforms other DIP-based methods in mitigating noise overfitting while maintaining a similar number of parameter updates as Vanilla DIP. Through extensive experiments, we validate the effectiveness of our method in various image reconstruction tasks, such as MRI and CT reconstruction, as well as in image restoration tasks like image denoising, inpainting, and non-linear deblurring.
more »
« less
Image Restoration Using Total Variation Regularized Deep Image Prior
In the past decade, sparsity-driven regularization has led to significant improvements in image reconstruction. Traditional regularizers, such as total variation (TV), rely on analytical models of sparsity. However, increasingly the field is moving towards trainable models, inspired from deep learning. Deep image prior (DIP) is a recent regularization framework that uses a convolutional neural network (CNN) architecture without data-driven training. This paper extends the DIP framework by combining it with the traditional TV regularization. We show that the inclusion of TV leads to considerable performance gains when tested on several traditional restoration tasks such as image denoising and deblurring.
more »
« less
- Award ID(s):
- 1813910
- PAR ID:
- 10099624
- Date Published:
- Journal Name:
- IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
- Page Range / eLocation ID:
- 7715 to 7719
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce Optimal Eye Surgeon (OES), a framework for pruning and training deep image generator networks. Typically, untrained deep convolutional networks, which include image sampling operations, serve as effective image priors (Ulyanov et al., 2018). However, they tend to overfit to noise in image restoration tasks due to being overparameterized. OES addresses this by adaptively pruning networks at random initialization to a level of underparameterization. This process effectively captures low-frequency image components even without training, by just masking. When trained to fit noisy images, these pruned subnetworks, which we term Sparse-DIP, resist overfitting to noise. This benefit arises from underparameterization and the regularization effect of masking, constraining them in the manifold of image priors. We demonstrate that subnetworks pruned through OES surpass other leading pruning methods, such as the Lottery Ticket Hypothesis, which is known to be suboptimal for image recovery tasks (Wu et al., 2023). Our extensive experiments demonstrate the transferability of OES-masks and the characteristics of sparse-subnetworks for image generation.more » « less
-
In this work, we study the deep image prior (DIP) for reconstruction problems in magnetic resonance imaging (MRI). DIP has become a popular approach for image reconstruction, where it recovers the clear image by fitting an overparameterized convolutional neural network (CNN) to the corrupted/undersampled measurements. To improve the performance of DIP, recent work shows that using a reference image as an input often leads to improved reconstruction results compared to vanilla DIP with random input. However, obtaining the reference input image often requires supervision and hence is difficult in practice. In this work, we propose a self-guided reconstruction scheme that uses no training data other than the set of undersampled measurements to simultaneously estimate the network weights and input (reference). We introduce a new regularization that aids the joint estimation by requiring the CNN to act as a powerful denoiser. The proposed self-guided method gives significantly improved image reconstructions for MRI with limited measurements compared to the conventional DIP and the reference-guided method while eliminating the need for any additional data.more » « less
-
Deep learning based PET image reconstruction methods have achieved promising results recently. However, most of these methods follow a supervised learning paradigm, which rely heavily on the availability of high-quality training labels. In particular, the long scanning time required and high radiation exposure associated with PET scans make obtaining these labels impractical. In this paper, we propose a dual-domain unsupervised PET image reconstruction method based on learned descent algorithm, which reconstructs high-quality PET images from sinograms without the need for image labels. Specifically, we unroll the proximal gradient method with a learnable norm for PET image reconstruction problem. The training is unsupervised, using measurement domain loss based on deep image prior as well as image domain loss based on rotation equivariance property. The experimental results demonstrate the superior performance of proposed method compared with maximum-likelihood expectation-maximization (MLEM), total-variation regularized EM (EM-TV) and deep image prior based method (DIP).more » « less
-
Traditional single-grid and pyramidal B-spline parameterizations used in deformable image registration require users to specify control point spacing configurations capable of accurately capturing both global and complex local deformations. In many cases, such grid configurations are non-obvious and largely selected based on user experience. Recent regularization methods imposing sparsity upon the B-spline coefficients throughout simultaneous multi-grid optimization, however, have provided a promising means of determining suitable configurations automatically. Unfortunately, imposing sparsity on over-parameterized B-spline models is computationally expensive and introduces additional difficulties such as undesirable local minima in the B-spline coefficient optimization process. To overcome these difficulties in determining B-spline grid configurations, this paper investigates the use of convolutional neural networks (CNNs) to learn and infer expressive sparse multi-grid configurations prior to B-spline coefficient optimization. Experimental results show that multi-grid configurations produced in this fashion using our CNN based approach provide registration quality comparable to L1-norm constrained over-parameterizations in terms of exactness, while exhibiting significantly reduced computational requirements.more » « less
An official website of the United States government

