The bandgap of wurzite ZnO layers grown on 2 inch diameter c-Al2O3 substrates by pulsed laser deposition was engineered from 3.7 to 4.8 eV by alloying with Mg. Above this Mg content the layers transformed from single phase hcp to mixed hcp/fcc phase before becoming single phase fcc above a bandgap of about 5.5 eV. Metal-Semiconductor-Metal (MSM) photodetectors based on gold Inter-Digitated-Transducer structures were fabricated from the single phase hcp layers by single step negative photolithography and then packaged in TO5 cans. The devices gave over 6 orders of magnitude of separation between dark and light signal with solar rejection ratios (I270 : I350) of over 3 x 105 and dark signals of 300 pA (at a bias of -5V). Spectral responsivities were engineered to fit the “Deutscher Verein des Gas- und Wasserfaches” industry standard form and gave over two decade higher responsivities (14 A/W, peaked at 270 nm) than commercial SiC based devices. Homogeneous Ga2O3 layers were also grown on 2 inch diameter c-Al2O3 substrates by PLD. Optical transmission spectra were coherent with a bandgap that increased from 4.9 to 5.4 eV when film thickness was decreased from 825 to 145 nm. X-ray diffraction revealed that the films were of the β-Ga2O3 (monoclinic) polytype with strong (-201) orientation. β-Ga2O3 MSM photodetectors gave over 4 orders of magnitude of separation between dark and light signal (at -5V bias) with dark currents of 250 pA and spectral responsivities of up to 40 A/W (at -0.75V bias). It was found that the spectral responsivity peak position could be decreased from 250 to 230 nm by reducing film thickness from 825 to 145 nm. This shift in peak responsivity wavelength with film thickness (a) was coherent with the apparent bandgap shift that was observed in transmission spectroscopy for the same layers and (b) conveniently provides a coverage of the spectral region in which MgZnO layers show fcc/hcp phase mixing. 
                        more » 
                        « less   
                    
                            
                            Understanding quantum confinement and ligand removal in solution-based ZnO thin films from highly stable nanocrystal ink
                        
                    
    
            We report a synthesis procedure for dodecanethiol capped wurtzite ZnO nanocrystals with an average diameter of 4 nm that are monodisperse, highly soluble, and shelf-stable for many months. Compared to previous ZnO ink recipes, we demonstrate improved particle solubility and excellent ink stability, resulting in ZnO nanocrystal inks that are optimized for printed electronics applications. The ZnO nanocrystal solution exhibits an absorption peak at 341 nm (3.63 eV), which represents a blue-shift of approximately 0.3 eV from the bulk ZnO bandgap (∼3.3 eV). This blue shift is consistent with previously reported models for an increased bandgap due to quantum confinement. We used variable-angle spectroscopic ellipsometry (VASE) to determine the optical properties of solution-processed thin films of ZnO nanocrystals, which provides valuable insight into the changes in film composition and morphology that occur during thermal annealing treatments ranging from 150–300 °C. The ZnO nanocrystals maintain their quantum confinement when deposited into a thin film, and the degree of quantum confinement is gradually reduced as the thermal annealing temperature increases. Using infrared absorption measurements (FTIR) and X-ray photoelectron spectroscopy (XPS), we show that the dodecanethiol ligands are removed from the ZnO films during annealing, resulting in a high-purity semiconductor film with very low carbon contamination. Furthermore, we show that annealing at 300 °C results in complete ligand removal with only a slight increase in grain size. Thin-film transistors (TFT) using ZnO nanocrystals as the channel material annealed at 300 °C show moderate mobility (∼0.002 cm 2 V −1 s −1 ) and good on/off ratio >10 4 . These results demonstrate the distinct advantages of colloidal nanocrystals for printed electronics applications: the composition and morphology of the solution-processed film can be carefully tuned by controlling the size and surface coating of the nanocrystals in the ink. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1710008
- PAR ID:
- 10099839
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 6
- Issue:
- 34
- ISSN:
- 2050-7526
- Page Range / eLocation ID:
- 9181 to 9190
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Quantum dots (QDs) offer several advantages in optoelectronics such as easy solution processing, strong light absorption and size tunable direct bandgap. However, their major limitation is their poor film mobility and short diffusion length (<250 nm). This has restricted the thickness of QD film to ∼200–300 nm due to the restriction that the diffusion length imposes on film thickness in order to keep efficient charge collection. Such thin films result in a significant decrease in quantum efficiency for λ > 700 nm in QDs photodetector and photovoltaic devices, causing a reduced photoresponsivity and a poor absorption towards the near-infrared part of the sunlight spectrum. Herein, we demonstrate 1 μm thick QDs photodetectors with intercalated graphene charge collectors that avoid the significant drop of quantum efficiency towards λ > 700 nm observed in most QD optoelectronic devices. The 1 μm thick intercalated QD films ensure strong light absorption while keeping efficient charge extraction with a quantum efficiency of 90%–70% from λ = 600 nm to 950 nm using intercalated graphene layers as charge collectors with interspacing distance of 100 nm. We demonstrate that the effect of graphene on light absorption is minimal. We achieve a time-modulation response of <1 s. We demonstrate that this technology can be implemented on flexible PET substrates, showing 70% of the original performance after 1000 times bending test. This system provides a novel approach towards high-performance photodetection and high conversion photovoltaic efficiency with quantum dots and on flexible substrates.more » « less
- 
            Abstract Room‐temperature solution‐processed flexible photodetectors with spectral response from 300 to 2600 nm are reported. Solution‐processed polymeric thin film with transparency ranging from 300 to 7000 nm and superior electrical conductivity as the transparent electrode is reported. Solution‐processed flexible broadband photodetectors with a “vertical” device structure incorporating a perovskite/PbSe quantum dot bilayer thin film based on the above solution‐processed transparent polymeric electrode are demonstrated. The utilization of perovskite/PbSe quantum dot bilayer thin film as the photoactive layer extends spectral response to infrared region and boosts photocurrent densities in both visible and infrared regions through the trap‐assisted photomultiplication effect. Operated at room temperature and under an external bias of ‐1 V, the solution‐processed flexible photodetectors exhibit over 230 mA W‐1responsivity, over 1011 cm Hz1/2/W photodetectivity from 300 to 2600 nm and ≈70 dB linear dynamic ranges. It is also found that the solution‐processed flexible broadband photodetectors exhibit fast response time and excellent flexibility. All these results demonstrate that this work develop a facile approach to realize room‐temperature operated ultrasensitive solution‐processed flexible broadband photodetectors with “vertical” device structure through solution‐processed transparent polymeric electrode.more » « less
- 
            The ternary chalcogenide Cu3VSe4 (CVSe) with sulvanite structure has been theoretically predicted to be a promising candidate for photovoltaic applications due to its suitable band-gap for solar absorption and the relatively earth-abundant elements in its composition. To realize the absorber layer via an inexpensive route, printed thin-films could be fabricated from dispersions of nano-sized Cu3VSe4 precursors. Herein, cubic Cu3VSe4 nanocrystals were successfully synthesized via a hot-injection method. Similar with reported Cu3VS4 nanocrystals, Cu3VSe4 nanocrystals with cubic structure exhibit three absorption bands in the UV-Visible range indicative of a potential intermediate bandgap existence. A thin film fabricated by depositing the nanoparticles Cu3VSe4 on FTO coated glass substrate, exhibited a p-type behavior and a photocurrent of ~ 4 μA/cm2 when measured in an electrochemical cell setting. This first demonstration of photocurrent exhibited by a CVSe nanocrystals thin film signifies a promising potential in photovoltaic applications.more » « less
- 
            Rutile germanium oxide (r-GeO2), an ultrawide bandgap semiconductor, is a promising material for next-generation power electronics. Understanding and controlling the structure and morphology of r-GeO2 thin films are crucial for advancing their integration into future devices. In this work, r-GeO2 thin films were grown using RF magnetron sputtering on r plane sapphire substrates. Postdeposition annealing (PDA) was performed in an oxygen ambient atmosphere to crystallize the films. PDA at 950 °C resulted in the formation of needle-like nanostructures, predominantly originating at the edges of the film and growing inward toward the sample center. Sequential annealing at increasing temperatures indicated that these needle-like structures begin forming at temperatures above 925 °C. Next, the effect of the PDA duration on the structure was studied. It was seen that PDA at 950 °C for durations of 1 to 15 min promoted formation of the rutile phase, and extending the PDA duration allowed greater surface coverage of the nanostructures. However, annealing even longer, i.e., for 120 min, resulted in mixed phases of α-quartz and rutile GeO2. These findings demonstrate that controlling the PDA temperature and duration can effectively modulate the morphology of rutile-phase GeO2 thin films.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    