Abstract Two-dimensional (2D) ternary materials recently generated interest in optoelectronics and energy-related applications, alongside their binary counterparts. To date, only a few naturally occurring layered 2D ternary materials have been explored. The plethora of benefits owed to reduced dimensionality prompted exploration of expanding non-layered ternary chalcogenides into the 2D realm. This work presents a templating method that uses 2D transition metal dichalcogenides as initiators to be converted into the corresponding ternary chalcogenide upon addition of copper, via a solution-phase synthesis, conducted in high boiling point solvents. The process starts with preparation of VSe2nanosheets, which are next converted into Cu3VSe4sulvanite nanosheets (NSs) which retain the 2D geometry while presenting an X-ray diffraction pattern identical with the one for the bulk Cu3VSe4. Both the scanning electron microscopy and transmission microscopy electron microscopy show the presence of quasi-2D morphology. Recent studies of the sulfur-containing sulvanite Cu3VS4highlight the presence of an intermediate bandgap, associated with enhanced photovoltaic (PV) performance. The Cu3VSe4nanosheets reported herein exhibit multiple UV–Vis absorption peaks, related to the intermediate bandgaps similar to Cu3VS4and Cu3VSe4nanocrystals. To test the potential of Cu3VSe4NSs as an absorber for solar photovoltaic devices, Cu3VSe4NSs thin-films deposited on FTO were subjected to photoelectrochemical testing, showing p-type behavior and stable photocurrents of up to ~ 0.036 mA/cm2. The photocurrent shows a ninefold increase in comparison to reported performance of Cu3VSe4nanocrystals. This proves that quasi-2D sulvanite nanosheets are amenable to thin-film deposition and could show superior PV performance in comparison to nanocrystal thin-films. The obtained electrical impedance spectroscopy signal of the Cu3VSe4 NSs-FTO based electrochemical cell fits an equivalent circuit with the circuit elements of solution resistance (Rs), charge-transfer resistance (Rct), double-layer capacitance (Cdl), and Warburg impedance (W). The estimated charge transfer resistance value of 300 Ω cm2obtained from the Nyquist plot provides an insight into the rate of charge transfer on the electrode/electrolyte interface. 
                        more » 
                        « less   
                    
                            
                            Synthesis and Optoelectronic Properties of Cu3VSe4 Nanocrystals
                        
                    
    
            The ternary chalcogenide Cu3VSe4 (CVSe) with sulvanite structure has been theoretically predicted to be a promising candidate for photovoltaic applications due to its suitable band-gap for solar absorption and the relatively earth-abundant elements in its composition. To realize the absorber layer via an inexpensive route, printed thin-films could be fabricated from dispersions of nano-sized Cu3VSe4 precursors. Herein, cubic Cu3VSe4 nanocrystals were successfully synthesized via a hot-injection method. Similar with reported Cu3VS4 nanocrystals, Cu3VSe4 nanocrystals with cubic structure exhibit three absorption bands in the UV-Visible range indicative of a potential intermediate bandgap existence. A thin film fabricated by depositing the nanoparticles Cu3VSe4 on FTO coated glass substrate, exhibited a p-type behavior and a photocurrent of ~ 4 μA/cm2 when measured in an electrochemical cell setting. This first demonstration of photocurrent exhibited by a CVSe nanocrystals thin film signifies a promising potential in photovoltaic applications. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1924412
- PAR ID:
- 10181442
- Date Published:
- Journal Name:
- PloS one
- Volume:
- 15
- Issue:
- 5
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0232184
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We report a synthesis procedure for dodecanethiol capped wurtzite ZnO nanocrystals with an average diameter of 4 nm that are monodisperse, highly soluble, and shelf-stable for many months. Compared to previous ZnO ink recipes, we demonstrate improved particle solubility and excellent ink stability, resulting in ZnO nanocrystal inks that are optimized for printed electronics applications. The ZnO nanocrystal solution exhibits an absorption peak at 341 nm (3.63 eV), which represents a blue-shift of approximately 0.3 eV from the bulk ZnO bandgap (∼3.3 eV). This blue shift is consistent with previously reported models for an increased bandgap due to quantum confinement. We used variable-angle spectroscopic ellipsometry (VASE) to determine the optical properties of solution-processed thin films of ZnO nanocrystals, which provides valuable insight into the changes in film composition and morphology that occur during thermal annealing treatments ranging from 150–300 °C. The ZnO nanocrystals maintain their quantum confinement when deposited into a thin film, and the degree of quantum confinement is gradually reduced as the thermal annealing temperature increases. Using infrared absorption measurements (FTIR) and X-ray photoelectron spectroscopy (XPS), we show that the dodecanethiol ligands are removed from the ZnO films during annealing, resulting in a high-purity semiconductor film with very low carbon contamination. Furthermore, we show that annealing at 300 °C results in complete ligand removal with only a slight increase in grain size. Thin-film transistors (TFT) using ZnO nanocrystals as the channel material annealed at 300 °C show moderate mobility (∼0.002 cm 2 V −1 s −1 ) and good on/off ratio >10 4 . These results demonstrate the distinct advantages of colloidal nanocrystals for printed electronics applications: the composition and morphology of the solution-processed film can be carefully tuned by controlling the size and surface coating of the nanocrystals in the ink.more » « less
- 
            Abstract 2D metal carbides and nitrides (MXene) are promising material platforms for on‐chip neural networks owing to their nonlinear saturable absorption effect. The localized surface plasmon resonances in metallic MXene nanoflakes may play an important role in enhancing the electromagnetic absorption; however, their contribution is not determined due to the lack of a precise understanding of its localized surface plasmon behavior. Here, a saturable absorber made of MXene thin film and a silicon waveguide with MXene flakes overlayer are developed to perform neuromorphic tasks. The proposed configurations are reconfigurable and can therefore be adjusted for various applications without the need to modify the physical structure of the proposed MXene‐based activator configurations via tuning the wavelength of operation. The capability and feasibility of the obtained results of machine‐learning applications are confirmed via handwritten digit classification task, with near 99% accuracy. These findings can guide the design of advanced ultrathin saturable absorption materials on a chip for a broad range of applications.more » « less
- 
            Abstract Nanostructured dielectric overlayers can be used to increase light absorption in nanometer-thin films used for various optoelectronic applications. Here, the self-assembly of a close-packed monolayer of polystyrene nanospheres is used to template a core–shell polystyrene-TiO2light-concentrating monolithic structure. This is enabled by the growth of TiO2at temperatures below the polystyrene glass-transition temperature via atomic layer deposition. The result is a monolithic, tailorable nanostructured overlayer fabricated by simple chemical methods. The design of this monolith can be tailored to generate significant absorption increases in thin film light absorbers. Finite-difference, time domain simulations are used to explore the design polystyrene-TiO2core–shell monoliths that maximize light absorption in a 40 nm GaAs-on-Si substrate as a model for a photoconductive antenna THz emitter. An optimized core–shell monolith structure generated a greater than 60-fold increase of light absorption at a single wavelength in the GaAs layer of the simulated model device.more » « less
- 
            Antimony selenide (Sb2Se3) emerges as a promising sunlight absorber in thin film photovoltaic applications due to its excellent light absorption properties and carrier transport behavior, attributed to the quasi‐one‐dimensional Sb4Se6‐nanoribbon crystal structure. Overcoming the challenge of aligning Sb2Se3‐nanoribbons normal to substrates for efficient photogenerated carrier extraction, a solution‐processed nanocrystalline Sb2(S,Se)3‐seeds are employed on the CdS buffer layer. These seeds facilitate superstrated Sb2Se3thin film solar cell growth through a close‐space sublimation approach. The Sb2(S,Se)3‐seeds guided the Sb2Se3absorber growth along a [002]‐preferred crystal orientation, ensuring a smoother interface with the CdS window layer. Remarkably, Sb2(S,Se)3‐seeds improve carrier transport, reduce series resistance, and increase charge recombination resistance, resulting in an enhanced power conversion efficiency of 7.52%. This cost‐effective solution‐processed seeds planting approach holds promise for advancing chalcogenide‐based thin film solar cells in large‐scale manufacturing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    