skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Adaptive Estimation for Approximate k-Nearest-Neighbor Computations
Algorithms often carry out equally many computations for “easy” and “hard” problem instances. In particular, algorithms for finding nearest neighbors typically have the same running time regardless of the particular problem instance. In this paper, we consider the approximate k-nearest-neighbor problem, which is the problem of finding a subset of O(k) points in a given set of points that contains the set of k nearest neighbors of a given query point. We pro- pose an algorithm based on adaptively estimating the distances, and show that it is essentially optimal out of algorithms that are only allowed to adaptively estimate distances. We then demonstrate both theoretically and experimentally that the algorithm can achieve significant speedups relative to the naive method.  more » « less
Award ID(s):
1816986
PAR ID:
10100187
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Artificial Intelligence and Statistics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The K-nearest neighbors is a basic problem in machine learning with numerous applications. In this problem, given a (training) set of n data points with labels and a query point q, we want to assign a label to q based on the labels of the K-nearest points to the query. We study this problem in the k-machine model, a model for distributed large-scale data. In this model, we assume that the n points are distributed (in a balanced fashion) among the k machines and the goal is to compute an answer given a query point to a machine using a small number of communication rounds. Our main result is a randomized algorithm in the k-machine model that runs in O(log K) communication rounds with high success probability (regardless of the number of machines k and the number of points n). The message complexity of the algorithm is small taking only O(k log K) messages. Our bounds are essentially the best possible for comparison-based algorithms. We also implemented our algorithm and show that it performs well in practice. 
    more » « less
  2. Diffusion State Distance (DSD) is a data-dependent metric that compares data points using a data-driven diffusion process and provides a powerful tool for learning the underlying structure of high-dimensional data. While finding the exact nearest neighbors in the DSD metric is computationally expensive, in this paper, we propose a new random-walk based algorithm that empirically finds approximate k-nearest neighbors accurately in an efficient manner. Numerical results for real-world protein-protein interaction networks are presented to illustrate the efficiency and robustness of the proposed algorithm. The set of approximate k-nearest neighbors performs well when used to predict proteins’ functional labels. 
    more » « less
  3. Bouamor, Houda; Pino, Juan; Bali, Kalika (Ed.)
    Cross-encoder models, which jointly encode and score a query-item pair, are prohibitively expensive for direct k-nearest neighbor (k-NN) search. Consequently, k-NN search typically employs a fast approximate retrieval (e.g. using BM25 or dual-encoder vectors), followed by reranking with a cross-encoder; however, the retrieval approximation often has detrimental recall regret. This problem is tackled by ANNCUR (Yadav et al., 2022), a recent work that employs a cross-encoder only, making search efficient using a relatively small number of anchor items, and a CUR matrix factorization. While ANNCUR’s one-time selection of anchors tends to approximate the cross-encoder distances on average, doing so forfeits the capacity to accurately estimate distances to items near the query, leading to regret in the crucial end-task: recall of top-k items. In this paper, we propose ADACUR, a method that adaptively, iteratively, and efficiently minimizes the approximation error for the practically important top-k neighbors. It does so by iteratively performing k-NN search using the anchors available so far, then adding these retrieved nearest neighbors to the anchor set for the next round. Empirically, on multiple datasets, in comparison to previous traditional and state-of-the-art methods such as ANNCUR and dual-encoder-based retrieve-and-rerank, our proposed approach ADACUR consistently reduces recall error—by up to 70% on the important k = 1 setting—while using no more compute than its competitors. 
    more » « less
  4. Given a data set of size n in d'-dimensional Euclidean space, the k-means problem asks for a set of k points (called centers) such that the sum of the l_2^2-distances between the data points and the set of centers is minimized. Previous work on this problem in the local differential privacy setting shows how to achieve multiplicative approximation factors arbitrarily close to optimal, but suffers high additive error. The additive error has also been seen to be an issue in implementations of differentially private k-means clustering algorithms in both the central and local settings. In this work, we introduce a new locally private k-means clustering algorithm that achieves near-optimal additive error whilst retaining constant multiplicative approximation factors and round complexity. Concretely, given any c>sqrt(2), our algorithm achieves O(k^(1 + O(1/(2c^2-1))) * sqrt(d' n) * log d' * poly log n) additive error with an O(c^2) multiplicative approximation factor. 
    more » « less
  5. We study the inference of network archaeology in growing random geometric graphs. We consider the root finding problem for a random nearest neighbor tree in dimension d∈N, generated by sequentially embedding vertices uniformly at random in the d-dimensional torus and connecting each new vertex to the nearest existing vertex. More precisely, given an error parameter ε>0 and the unlabeled tree, we want to efficiently find a small set of candidate vertices, such that the root is included in this set with probability at least 1−ε. We call such a candidate set a confidence set. We define several variations of the root finding problem in geometric settings -- embedded, metric, and graph root finding -- which differ based on the nature of the type of metric information provided in addition to the graph structure (torus embedding, edge lengths, or no additional information, respectively). We show that there exist efficient root finding algorithms for embedded and metric root finding. For embedded root finding, we derive upper and lower bounds (uniformly bounded in n) on the size of the confidence set: the upper bound is subpolynomial in 1/ε and stems from an explicit efficient algorithm, and the information-theoretic lower bound is polylogarithmic in 1/ε. In particular, in d=1, we obtain matching upper and lower bounds for a confidence set of size Θ(log(1/ε)loglog(1/ε)). 
    more » « less