Abstract Consider a set of n vertices, where each vertex has a location in $$\mathbb{R}^d$$ that is sampled uniformly from the unit cube in $$\mathbb{R}^d$$ , and a weight associated to it. Construct a random graph by placing edges independently for each vertex pair with a probability that is a function of the distance between the locations and the vertex weights. Under appropriate integrability assumptions on the edge probabilities that imply sparseness of the model, after appropriately blowing up the locations, we prove that the local limit of this random graph sequence is the (countably) infinite random graph on $$\mathbb{R}^d$$ with vertex locations given by a homogeneous Poisson point process, having weights which are independent and identically distributed copies of limiting vertex weights. Our set-up covers many sparse geometric random graph models from the literature, including geometric inhomogeneous random graphs (GIRGs), hyperbolic random graphs, continuum scale-free percolation, and weight-dependent random connection models. We prove that the limiting degree distribution is mixed Poisson and the typical degree sequence is uniformly integrable, and we obtain convergence results on various measures of clustering in our graphs as a consequence of local convergence. Finally, as a byproduct of our argument, we prove a doubly logarithmic lower bound on typical distances in this general setting.
more »
« less
This content will become publicly available on November 21, 2025
Finding the root in random nearest neighbor trees
We study the inference of network archaeology in growing random geometric graphs. We consider the root finding problem for a random nearest neighbor tree in dimension d∈N, generated by sequentially embedding vertices uniformly at random in the d-dimensional torus and connecting each new vertex to the nearest existing vertex. More precisely, given an error parameter ε>0 and the unlabeled tree, we want to efficiently find a small set of candidate vertices, such that the root is included in this set with probability at least 1−ε. We call such a candidate set a confidence set. We define several variations of the root finding problem in geometric settings -- embedded, metric, and graph root finding -- which differ based on the nature of the type of metric information provided in addition to the graph structure (torus embedding, edge lengths, or no additional information, respectively). We show that there exist efficient root finding algorithms for embedded and metric root finding. For embedded root finding, we derive upper and lower bounds (uniformly bounded in n) on the size of the confidence set: the upper bound is subpolynomial in 1/ε and stems from an explicit efficient algorithm, and the information-theoretic lower bound is polylogarithmic in 1/ε. In particular, in d=1, we obtain matching upper and lower bounds for a confidence set of size Θ(log(1/ε)loglog(1/ε)).
more »
« less
- Award ID(s):
- 2152413
- PAR ID:
- 10574635
- Publisher / Repository:
- ACM Corr
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Lightness and sparsity are two natural parameters for Euclidean (1+ε)-spanners. Classical results show that, when the dimension d ∈ ℕ and ε > 0 are constant, every set S of n points in d-space admits an (1+ε)-spanners with O(n) edges and weight proportional to that of the Euclidean MST of S. Tight bounds on the dependence on ε > 0 for constant d ∈ ℕ have been established only recently. Le and Solomon (FOCS 2019) showed that Steiner points can substantially improve the lightness and sparsity of a (1+ε)-spanner. They gave upper bounds of Õ(ε^{-(d+1)/2}) for the minimum lightness in dimensions d ≥ 3, and Õ(ε^{-(d-1))/2}) for the minimum sparsity in d-space for all d ≥ 1. They obtained lower bounds only in the plane (d = 2). Le and Solomon (ESA 2020) also constructed Steiner (1+ε)-spanners of lightness O(ε^{-1}logΔ) in the plane, where Δ ∈ Ω(log n) is the spread of S, defined as the ratio between the maximum and minimum distance between a pair of points. In this work, we improve several bounds on the lightness and sparsity of Euclidean Steiner (1+ε)-spanners. Using a new geometric analysis, we establish lower bounds of Ω(ε^{-d/2}) for the lightness and Ω(ε^{-(d-1)/2}) for the sparsity of such spanners in Euclidean d-space for all d ≥ 2. We use the geometric insight from our lower bound analysis to construct Steiner (1+ε)-spanners of lightness O(ε^{-1}log n) for n points in Euclidean plane.more » « less
-
ABSTRACT A random algebraic graph is defined by a group with a uniform distribution over it and a connection with expectation satisfying . The random graph with vertex set is formed as follows. First, independent variables are sampled uniformly from . Then, vertices are connected with probability . This model captures random geometric graphs over the sphere, torus, and hypercube; certain instances of the stochastic block model; and random subgraphs of Cayley graphs. The main question of interest to the current paper is: when is a random algebraic graph statistically and/or computationally distinguishable from ? Our results fall into two categories. (1) Geometric. We focus on the case and use Fourier‐analytic tools. We match and extend the following results from the prior literature: For hard threshold connections, we match for , and for ‐Lipschitz connections we extend the results of when to the non‐monotone setting. (2) Algebraic. We provide evidence for an exponential statistical‐computational gap. Consider any finite group and let be a set of elements formed by including each set of the form independently with probability Let be the distribution of random graphs formed by taking a uniformly random induced subgraph of size of the Cayley graph . Then, and are statistically indistinguishable with high probability over if and only if . However, low‐degree polynomial tests fail to distinguish and with high probability over whenmore » « less
-
Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)We re-visit the complexity of polynomial time pre-processing (kernelization) for the d-Hitting Set problem. This is one of the most classic problems in Parameterized Complexity by itself, and, furthermore, it encompasses several other of the most well-studied problems in this field, such as Vertex Cover, Feedback Vertex Set in Tournaments (FVST) and Cluster Vertex Deletion (CVD). In fact, d-Hitting Set encompasses any deletion problem to a hereditary property that can be characterized by a finite set of forbidden induced subgraphs. With respect to bit size, the kernelization complexity of d-Hitting Set is essentially settled: there exists a kernel with 𝒪(k^d) bits (𝒪(k^d) sets and 𝒪(k^{d-1}) elements) and this it tight by the result of Dell and van Melkebeek [STOC 2010, JACM 2014]. Still, the question of whether there exists a kernel for d-Hitting Set with fewer elements has remained one of the most major open problems in Kernelization. In this paper, we first show that if we allow the kernelization to be lossy with a qualitatively better loss than the best possible approximation ratio of polynomial time approximation algorithms, then one can obtain kernels where the number of elements is linear for every fixed d. Further, based on this, we present our main result: we show that there exist approximate Turing kernelizations for d-Hitting Set that even beat the established bit-size lower bounds for exact kernelizations - in fact, we use a constant number of oracle calls, each with "near linear" (𝒪(k^{1+ε})) bit size, that is, almost the best one could hope for. Lastly, for two special cases of implicit 3-Hitting set, namely, FVST and CVD, we obtain the "best of both worlds" type of results - (1+ε)-approximate kernelizations with a linear number of vertices. In terms of size, this substantially improves the exact kernels of Fomin et al. [SODA 2018, TALG 2019], with simpler arguments.more » « less
-
null (Ed.)We introduce and study the problem of constructing geometric graphs that have few vertices and edges and that are universal for planar graphs or for some sub-class of planar graphs; a geometric graph is universal for a class H of planar graphs if it contains an embedding, i.e., a crossing-free drawing, of every graph in H . Our main result is that there exists a geometric graph with n vertices and O(nlogn) edges that is universal for n-vertex forests; this extends to the geometric setting a well-known graph-theoretic result by Chung and Graham, which states that there exists an n-vertex graph with O(nlogn) edges that contains every n-vertex forest as a subgraph. Our O(nlogn) bound on the number of edges is asymptotically optimal. We also prove that, for every h>0 , every n-vertex convex geometric graph that is universal for the class of the n-vertex outerplanar graphs has Ωh(n2−1/h) edges; this almost matches the trivial O(n2) upper bound given by the n-vertex complete convex geometric graph. Finally, we prove that there is an n-vertex convex geometric graph with n vertices and O(nlogn) edges that is universal for n-vertex caterpillars.more » « less
An official website of the United States government
