skip to main content


Search for: All records

Award ID contains: 1816986

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The risk of overparameterized models, in particular deep neural networks, is often double- descent shaped as a function of the model size. Recently, it was shown that the risk as a function of the early-stopping time can also be double-descent shaped, and this behavior can be explained as a super-position of bias-variance tradeoffs. In this paper, we show that the risk of explicit L2-regularized models can exhibit double descent behavior as a function of the regularization strength, both in theory and practice. We find that for linear regression, a double descent shaped risk is caused by a superposition of bias-variance tradeoffs corresponding to different parts of the model and can be mitigated by scaling the regularization strength of each part appropriately. Motivated by this result, we study a two-layer neural network and show that double descent can be eliminated by adjusting the regularization strengths for the first and second layer. Lastly, we study a 5-layer CNN and ResNet-18 trained on CIFAR-10 with label noise, and CIFAR-100 without label noise, and demonstrate that all exhibit double descent behavior as a function of the regularization strength. 
    more » « less
  2. Deep learning based image reconstruction methods outperform traditional methods. However, neural networks suffer from a performance drop when applied to images from a different distribution than the training images. For example, a model trained for reconstructing knees in accelerated magnetic resonance imaging (MRI) does not reconstruct brains well, even though the same network trained on brains reconstructs brains perfectly well. Thus there is a distribution shift performance gap for a given neural network, defined as the difference in performance when training on a distribution P and training on another distribution Q, and evaluating both models on Q. In this work, we propose a domain adaptation method for deep learning based compressive sensing that relies on self-supervision during training paired with test-time training at inference. We show that for four natural distribution shifts, this method essentially closes the distribution shift performance gap for state-of-the-art architectures for accelerated MRI. 
    more » « less
  3. null (Ed.)
    Deep neural networks have emerged as very successful tools for image restoration and reconstruction tasks. These networks are often trained end-to-end to directly reconstruct an image from a noisy or corrupted measurement of that image. To achieve state-of-the-art performance, training on large and diverse sets of images is considered critical. However, it is often difficult and/or expensive to collect large amounts of training images. Inspired by the success of Data Augmentation (DA) for classification problems, in this paper, we propose a pipeline for data augmentation for accelerated MRI reconstruction and study its effectiveness at reducing the required training data in a variety of settings. Our DA pipeline, MRAugment, is specifically designed to utilize the invariances present in medical imaging measurements as naive DA strategies that neglect the physics of the problem fail. Through extensive studies on multiple datasets we demonstrate that in the low-data regime DA prevents overfitting and can match or even surpass the state of the art while using significantly fewer training data, whereas in the high-data regime it has diminishing returns. Furthermore, our findings show that DA improves the robustness of the model against various shifts in the test distribution. 
    more » « less
  4. null (Ed.)
    Deep neural networks give state-of-the-art accuracy for reconstructing images from few and noisy measurements, a problem arising for example in accelerated magnetic resonance imaging (MRI). However, recent works have raised concerns that deep-learning-based image reconstruction methods are sensitive to perturbations and are less robust than traditional methods: Neural networks (i) may be sensitive to small, yet adversarially-selected perturbations, (ii) may perform poorly under distribution shifts, and (iii) may fail to recover small but important features in an image. In order to understand the sensitivity to such perturbations, in this work, we measure the robustness of different approaches for image reconstruction including trained and un-trained neural networks as well as traditional sparsity-based methods. We find, contrary to prior works, that both trained and un-trained methods are vulnerable to adversarial perturbations. Moreover, both trained and un-trained methods tuned for a particular dataset suffer very similarly from distribution shifts. Finally, we demonstrate that an image reconstruction method that achieves higher reconstruction quality, also performs better in terms of accurately recovering fine details. Our results indicate that the state-of-the-art deep-learning-based image reconstruction methods provide improved performance than traditional methods without compromising robustness. 
    more » « less
  5. null (Ed.)
    Over-parameterized models, such as large deep networks, often exhibit a double descent phenomenon, whereas a function of model size, error first decreases, increases, and decreases at last. This intriguing double descent behavior also occurs as a function of training epochs and has been conjectured to arise because training epochs control the model complexity. In this paper, we show that such epoch-wise double descent arises for a different reason: It is caused by a superposition of two or more bias-variance tradeoffs that arise because different parts of the network are learned at different epochs, and eliminating this by proper scaling of stepsizes can significantly improve the early stopping performance. We show this analytically for i) linear regression, where differently scaled features give rise to a superposition of bias-variance tradeoffs, and for ii) a two-layer neural network, where the first and second layer each govern a bias-variance tradeoff. Inspired by this theory, we study two standard convolutional networks empirically and show that eliminating epoch-wise double descent through adjusting stepsizes of different layers improves the early stopping performance significantly. 
    more » « less
  6. null (Ed.)
  7. Un-trained convolutional neural networks have emerged as highly successful tools for image recovery and restoration. They are capable of solving standard inverse problems such as denoising and compressive sensing with excellent results by simply fitting a neural network model to measurements from a single image or signal without the need for any additional training data. For some applications, this critically requires additional regularization in the form of early stopping the optimization. For signal recovery from a few measurements, however, un-trained convolutional networks have an intriguing self-regularizing property: Even though the network can perfectly fit any image, the network recovers a natural image from few measurements when trained with gradient descent until convergence. In this paper, we provide numerical evidence for this property and study it theoretically. We show that---without any further regularization---an un-trained convolutional neural network can approximately reconstruct signals and images that are sufficiently structured, from a near minimal number of random measurements. 
    more » « less
  8. Convolutional Neural Networks (CNNs) have emerged as highly successful tools for image generation, recovery, and restoration. A major contributing factor to this success is that convolutional networks impose strong prior assumptions about natural images. A surprising experiment that highlights this architectural bias towards natural images is that one can remove noise and corruptions from a natural image without using any training data, by simply fitting (via gradient descent) a randomly initialized, over-parameterized convolutional generator to the corrupted image. While this over-parameterized network can fit the corrupted image perfectly, surprisingly after a few iterations of gradient descent it generates an almost uncorrupted image. This intriguing phenomenon enables state-of-the-art CNN-based denoising and regularization of other inverse problems. In this paper, we attribute this effect to a particular architectural choice of convolutional networks, namely convolutions with fixed interpolating filters. We then formally characterize the dynamics of fitting a two-layer convolutional generator to a noisy signal and prove that early-stopped gradient descent denoises/regularizes. Our proof relies on showing that convolutional generators fit the structured part of an image significantly faster than the corrupted portion. 
    more » « less
  9. Deep neural networks, in particular convolutional neural networks, have become highly effective tools for compressing images and solving inverse problems including denoising, inpainting, and reconstruction from few and noisy measurements. This success can be attributed in part to their ability to represent and generate natural images well. Contrary to classical tools such as wavelets, image-generating deep neural networks have a large number of parameters---typically a multiple of their output dimension---and need to be trained on large datasets. In this paper, we propose an untrained simple image model, called the deep decoder, which is a deep neural network that can generate natural images from very few weight parameters. The deep decoder has a simple architecture with no convolutions and fewer weight parameters than the output dimensionality. This underparameterization enables the deep decoder to compress images into a concise set of network weights, which we show is on par with wavelet-based thresholding. Further, underparameterization provides a barrier to overfitting, allowing the deep decoder to have state-of-the-art performance for denoising. The deep decoder is simple in the sense that each layer has an identical structure that consists of only one upsampling unit, pixel-wise linear combination of channels, ReLU activation, and channelwise normalization. This simplicity makes the network amenable to theoretical analysis, and it sheds light on the aspects of neural networks that enable them to form effective signal representations. 
    more » « less
  10. Normalization layers are widely used in deep neural networks to stabilize training. In this paper, we consider the training of convolutional neural networks with gradient descent on a single training example. This optimization problem arises in recent approaches for solving inverse problems such as the deep image prior or the deep decoder. We show that for this setup, channel normalization, which centers and normalizes each channel individually, avoids vanishing gradients, whereas without normalization, gradients vanish which prevents efficient optimization. This effect prevails in deep single-channel linear convolutional networks, and we show that without channel normalization, gradient descent takes at least exponentially many steps to come close to an optimum. Contrary, with channel normalization, the gradients remain bounded, thus avoiding exploding gradients. 
    more » « less