Recent studies and industry advancements indicate that modular vehicles (MVs) have the potential to enhance transportation systems through their ability to dock and split during a trip. Although various applications of MVs have been explored across different domains, their application in logistics remains underexplored. This study examines the use of MVs in cargo delivery to reduce total delivery costs. We model the delivery problem for MVs as a variant of the Vehicle Routing Problem, referred to as the Modular Vehicle Routing Problem (MVRP). In the MVRP, MVs can either serve customers independently or dock with other MVs to form a platoon, thereby reducing the average cost per unit. In this study, we mainly focus on two fundamental types of MVRPs, namely the capacitated MVRP (CMVRP) and the MVRP with time windows (MVRPTW). To address these problems, we first developed mixed-integer linear programming (MILP) models, which can be solved using commercial optimization solvers. Given the NP-hardness of this problem, we also designed a Tabu Search (TS) algorithm with a solution representation based on Gantt charts and a neighborhood structure tailored for the MVRP. Multi-start and shaking strategies were incorporated into the TS algorithm to escape local optima. Additionally, we explored other potential applications in logistics and discussed problem settings for three MVRP variants. Results from numerical experiments indicate that the proposed algorithm successfully identifies nearly all optimal solutions found by the MILP model in small-size benchmark instances, while also demonstrating good convergence speed in large-size benchmark instances. Comparative experiments show that the MVRP approach can reduce costs by approximately 5.6% compared to traditional delivery methods. Sensitivity analyses reveal that improving the cost-saving capability of MV platooning can enhance overall benefits.
more »
« less
Experimenting with robotic intra-logistics domains
Abstract We introduce the asprilo 1 framework to facilitate experimental studies of approaches addressing complex dynamic applications. For this purpose, we have chosen the domain of robotic intra-logistics. This domain is not only highly relevant in the context of today's fourth industrial revolution but it moreover combines a multitude of challenging issues within a single uniform framework. This includes multi-agent planning, reasoning about action, change, resources, strategies, etc. In return, asprilo allows users to study alternative solutions as regards effectiveness and scalability. Although asprilo relies on Answer Set Programming and Python, it is readily usable by any system complying with its fact-oriented interface format. This makes it attractive for benchmarking and teaching well beyond logic programming. More precisely, asprilo consists of a versatile benchmark generator, solution checker and visualizer as well as a bunch of reference encodings featuring various ASP techniques. Importantly, the visualizer's animation capabilities are indispensable for complex scenarios like intra-logistics in order to inspect valid as well as invalid solution candidates. Also, it allows for graphically editing benchmark layouts that can be used as a basis for generating benchmark suites.
more »
« less
- Award ID(s):
- 1619273
- PAR ID:
- 10100328
- Date Published:
- Journal Name:
- Theory and Practice of Logic Programming
- Volume:
- 18
- Issue:
- 3-4
- ISSN:
- 1471-0684
- Page Range / eLocation ID:
- 502 to 519
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Existing approaches to automatic data transformation are insufficient to meet the requirements in many real-world scenarios, such as the building sector. First, there is no convenient interface for domain experts to provide domain knowledge easily. Second, they require significant training data collection overheads. Third, the accuracy suffers from complicated schema changes. To address these shortcomings, we present a novel approach that leverages the unique capabilities of large language models (LLMs) in coding, complex reasoning, and zero-shot learning to generate SQL code that transforms the source datasets into the target datasets. We demonstrate the viability of this approach by designing an LLM-based framework, termed SQLMorpher, which comprises a prompt generator that integrates the initial prompt with optional domain knowledge and historical patterns in external databases. It also implements an iterative prompt optimization mechanism that automatically improves the prompt based on flaw detection. The key contributions of this work include (1) pioneering an end-to-end LLM-based solution for data transformation, (2) developing a benchmark dataset of 105 real-world building energy data transformation problems, and (3) conducting an extensive empirical evaluation where our approach achieved 96% accuracy in all 105 problems. SQLMorpher demonstrates the effectiveness of utilizing LLMs in complex, domain-specific challenges, highlighting the potential of their potential to drive sustainable solutions.more » « less
-
Programming industrial robots is difficult and expensive. Although recent work has made substantial progress in making it accessible to a wider range of users, it is often limited to simple programs and its usability remains untested in practice. In this article, we introduce Duplo, a block-based programming environment that allows end-users to program two-armed robots and solve tasks that require coordination. Duplo positions the program for each arm side-by-side, using the spatial relationship between blocks from each program to represent parallelism in a way that end-users can easily understand. This design was proposed by previous work, but not implemented or evaluated in a realistic programming setting. We performed a randomized experiment with 52 participants that evaluated Duplo on a complex programming task that contained several sub-tasks. We compared Duplo with RobotStudio Online YuMi, a commercial solution, and found that Duplo allowed participants to solve the same task faster and with greater success. By analyzing the information collected during our user study, we further identified factors that explain this performance difference, as well as remaining barriers, such as debugging issues and difficulties in interacting with the robot. This work represents another step towards allowing a wider audience of non-professionals to program, which might enable the broader deployment of robotics.more » « less
-
Frasson, C.; Mylonas, P.; Troussas, C. (Ed.)Domain modeling is an important task in designing, developing, and deploying intelligent tutoring systems and other adaptive instructional systems. We focus here on the more specific task of automatically extracting a domain model from textbooks. In particular, this paper explores using multiple textbook indexes to extract a domain model for computer programming. Our approach is based on the observation that different experts, i.e., authors of intro-to-programming textbooks in our case, break down a domain in slightly different ways, and identifying the commonalities and differences can be very revealing. To this end, we present automated approaches to extracting domain models from multiple textbooks and compare the resulting common domain model with a domain model created by experts. Specifically, we use approximate string-matching approaches to increase coverage of the resulting domain model and majority voting across different textbooks to discover common domain terms related to computer programming. Our results indicate that using approximate string matching gives more accurate domain models for computer programming with increased precision and recall. By automating our approach, we can significantly reduce the time and effort required to construct high-quality domain models, making it easy to develop and deploy tutoring systems. Furthermore, we obtain a common domain model that can serve as a benchmark or skeleton that can be used broadly and adapted to specific needs by others.more » « less
-
Reverse logistics has been gaining recognition in practice (and theory) for helping companies better match supply with demand, and thus reduce costs in their supply chains. In this paper, we study reverse logistics from the perspective of a supply chain in which each location can initiate multiple flows of product. Our first objective is to jointly optimize ordering decisions pertaining to regular, reverse and expedited flows of product in a stochastic, multi-stage inventory model of a logistics supply chain, in which the physical transformation of the product is completed at the most upstream location in the system. Due to those multiple flows of product, the feasible region for the problem acquires multi-dimensional boundaries that lead to the curse of dimensionality. To address this challenge, we develop a different solution method that allows us to reduce the dimensionality of the feasible region and, subsequently, identify the structure of the optimal policy. We refer to this policy as a nested echelon base-stock policy, as decisions for different product flows are sequentially nested within each other. We show that this policy renders the model analytically and numerically tractable. Our results provide actionable policies for firms to jointly manage three different product flows in their supply chains, and allow us arrive at insights regarding the main drivers of the value of reverse logistics. One of our key findings is that, when it comes to the value generated by reverse logistics, demand variability (i.e., demand uncertainty across periods) matters more than demand volatility (i.e., demand uncertainty within each period). This is because, in the absence of demand variability, it is effectively never optimal to return product upstream, regardless of the level of inherent demand volatility. Our second objective is to extend our analysis to product transforming-supply chains, in which product transformation is allowed to occur at each location. In such a system, it becomes necessary to keep track of both the location and stage of completion of each unit of inventory, so that the number of state and decisions variables increases with the square of the number of locations in the system. To analyze such a supply chain, we first identify a policy that provides a lower bound on the total cost. Then, we establish a special decomposition of the objective cost function that allows us to propose a novel heuristic policy. We find that the performance gap of our heuristic policy relative to the lower-bounding policy averages less than 5% across a range of parameters and supply chain lengths.more » « less
An official website of the United States government

