skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Modular vehicle routing problem: Applications in logistics
Recent studies and industry advancements indicate that modular vehicles (MVs) have the potential to enhance transportation systems through their ability to dock and split during a trip. Although various applications of MVs have been explored across different domains, their application in logistics remains underexplored. This study examines the use of MVs in cargo delivery to reduce total delivery costs. We model the delivery problem for MVs as a variant of the Vehicle Routing Problem, referred to as the Modular Vehicle Routing Problem (MVRP). In the MVRP, MVs can either serve customers independently or dock with other MVs to form a platoon, thereby reducing the average cost per unit. In this study, we mainly focus on two fundamental types of MVRPs, namely the capacitated MVRP (CMVRP) and the MVRP with time windows (MVRPTW). To address these problems, we first developed mixed-integer linear programming (MILP) models, which can be solved using commercial optimization solvers. Given the NP-hardness of this problem, we also designed a Tabu Search (TS) algorithm with a solution representation based on Gantt charts and a neighborhood structure tailored for the MVRP. Multi-start and shaking strategies were incorporated into the TS algorithm to escape local optima. Additionally, we explored other potential applications in logistics and discussed problem settings for three MVRP variants. Results from numerical experiments indicate that the proposed algorithm successfully identifies nearly all optimal solutions found by the MILP model in small-size benchmark instances, while also demonstrating good convergence speed in large-size benchmark instances. Comparative experiments show that the MVRP approach can reduce costs by approximately 5.6% compared to traditional delivery methods. Sensitivity analyses reveal that improving the cost-saving capability of MV platooning can enhance overall benefits.  more » « less
Award ID(s):
2023408 2313835 2313578
PAR ID:
10578303
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Transportation Research Part E: Logistics and Transportation Review
Volume:
197
Issue:
C
ISSN:
1366-5545
Page Range / eLocation ID:
104022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Drone-based last-mile delivery is an emerging technology that uses drones loaded onto a truck to deliver parcels to customers. In this paper, we introduce a fully automated system for drone-based last-mile delivery through incorporation of autonomous vehicles (AVs). A novel problem called the autonomous vehicle routing problem with drones (A-VRPD) is defined. A-VRPD is to select AVs from a pool of available AVs based on crowd sourcing, assign selected AVs to customer groups, and schedule routes for selected AVs to optimize the total operational cost. We formulate A-VRPD as a Mixed Integer Linear Program (MILP) and propose an optimization framework to solve the problem. A greedy algorithm is also developed to significantly improve the running time for large-scale delivery scenarios. Extensive simulations were conducted taking into account real-world operational costs for different types of AVs, traveled distances calculated considering the real-time traffic conditions using Google Map API, and varying load capacities of AVs. We evaluated the performance in comparison with two different state-of-the-art solutions: an algorithm designed to address the traditional vehicle routing problem with drones (VRP-D), which involves human-operated trucks working in tandem with drones to deliver parcels, and an algorithm for the two echelon vehicle routing problem (2E-VRP), wherein parcels are first transported to satellite locations and subsequently delivered from those satellites to the customers. The results indicate a substantial increase in profits for both the delivery company and vehicle owners compared with the state-of-the-art algorithms. 
    more » « less
  2. We consider a variant of the vehicle routing problem (VRP) where each customer has a unit demand and the goal is to minimize the total cost of routing a fleet of capacitated vehicles from one or multiple depots to visit all customers. We propose two parallel algorithms to efficiently solve the column-generation-based linear-programming relaxation for this VRP. Specifically, we focus on algorithms for the “pricing problem,” which corresponds to the resource-constrained elementary shortest path problem. The first algorithm extends the pulse algorithm for which we derive a new bounding scheme on the maximum load of any route. The second algorithm is based on random coloring from parameterized complexity which can be also combined with other techniques in the literature for improving VRPs, including cutting planes and column enumeration. We conduct numerical studies using VRP benchmarks (with 50–957 nodes) and instances of a medical home care delivery problem using census data in Wayne County, Michigan. Using parallel computing, both pulse and random coloring can significantly improve column generation for solving the linear programming relaxations and we can obtain heuristic integer solutions with small optimality gaps. Combining random coloring with column enumeration, we can obtain improved integer solutions having less than 2% optimality gaps for most VRP benchmark instances and less than 1% optimality gaps for the medical home care delivery instances, both under a 30-minute computational time limit. The use of cutting planes (e.g., robust cuts) can further reduce optimality gaps on some hard instances, without much increase in the run time. Summary of Contribution: The vehicle routing problem (VRP) is a fundamental combinatorial problem, and its variants have been studied extensively in the literature of operations research and computer science. In this paper, we consider general-purpose algorithms for solving VRPs, including the column-generation approach for the linear programming relaxations of the integer programs of VRPs and the column-enumeration approach for seeking improved integer solutions. We revise the pulse algorithm and also propose a random-coloring algorithm that can be used for solving the elementary shortest path problem that formulates the pricing problem in the column-generation approach. We show that the parallel implementation of both algorithms can significantly improve the performance of column generation and the random coloring algorithm can improve the solution time and quality of the VRP integer solutions produced by the column-enumeration approach. We focus on algorithmic design for VRPs and conduct extensive computational tests to demonstrate the performance of various approaches. 
    more » « less
  3. Abstract In this paper, we address a biomass feedstock logistics problem to supply biomass from production fields to satellite storage locations (SSLs) and from there to bioenergy plants (BePs) and then to a biorefinery. It entails a new problem feature of routing load-out equipment sets among the SSLs to perform loading/unloading of biomass and/or its pre-processing operations. The ownership of the loading equipment is a very capital-intensive link of the ethanol production supply chain, which when loaded onto trucks and routed along the logistics chain significantly brings down the ethanol production costs. This will make ethanol a cost-competitive alternative to fossil fuels, lead to sustainable use of fossil fuels and add to the overall relevance of the bioenergy sector. In this regard, the objective of our problem is to minimize the total cost incurred due to the ownership of equipment sets, fixed setups, and land rental cost, as well as the cost of transporting biomass from the fields to the BePs and biocrude oil from the BePs to the refinery. A mixed-integer mathematical model of the problem is presented, and a nested Benders decomposition-based solution approach is developed which involves decomposing this large problem into three stages. Stage 1 deals with the selection of fields, BePs, and SSLs, and assignment of fields to the SSLs. The remaining model consists of multiple Capacitated Vehicle Routing Problems (CVRPs) that are separable over individual BePs. For each BeP, the CVRP is further decomposed into Stage 2 and Stage 3 sub-problems where the Stage 2 problem is an allocation problem that assigns SSLs to tours associated to each BeP, and the Stage 3 problem is a variant of Traveling Salesman Problem (TSP) that determines the sequence in which equipment is routed over the predesignated set of SSLs for each tour. These sub-problems are integer programs rather than linear programs. First novelty of our proposed approach is to effectively handle the integrality of variables arising due to the consideration of the routing of load-out equipment. Second is solution methodology and in the use of proposed multi-cut version of optimality cuts that capture the solution value at an integer solution for the sub-problems. These cuts aid in faster convergence and are shown to be stronger than those proposed in the literature. The applicability of the proposed methodology is demonstrated by applying it to a real-life problem that utilizes available GIS data for the catchment area of regions around Gretna and Bedford in Virginia. We then solved a set of varying problem size instances using the state-of-the-art CPLEX® Branch-and-Bound and Benders Strategy methods. The CPLEX® algorithms struggled to solve instances even 10 times smaller than the real-life problem size instances; with MIP optimality gaps ranging from 5.85% to 82.79% in the allowed time limit of 10,000 s. On the other hand, our proposed nested Benders decomposition algorithm was able to achieve faster convergence and provided optimal solutions for all the considered problem instances with an average CPU run-time of around 3,700 s. This validates the efficacy and superiority of our solution approach. Lastly, we summarize our work and point out some interesting potential future research opportunities. 
    more » « less
  4. The battery electric truck (BET) has emerged as a promising solution to reduce greenhouse gas emissions in urban logistics, given the current strict environmental regulations. This research explores the formulation and solution of the bi-objective BET dispatching problem with backhauls and time windows, aiming to simultaneously reduce environmental impacts and enhance the efficiency of urban logistics. From the sustainability perspective, one of the objectives is to minimize total energy costs, which include energy consumption and battery replacement expenses. On the other hand, from an economic perspective, the other objective is the minimization of labor costs. To solve this bi-objective BET dispatching problem, we propose an innovative approach, integrating an adaptive large neighborhood search-based metaheuristics algorithm with a multi-objective optimization strategy. This integration enables the exploration of the trade-off between fleet energy expenses and labor costs, optimizing the dispatching decisions for BETs. To validate the proposed dispatching strategy, extensive experiments were conducted using real-world fleet operations data from a logistics fleet in Southern California. The results demonstrated that the proposed approach yields a set of Pareto solutions, showcasing its effectiveness in finding a balance between energy efficiency and labor costs in urban logistics systems. The findings of this research contribute to advancing sustainable urban logistics practices and provide valuable insights for fleet operators in effectively managing BET fleets to reduce environmental impacts while maintaining economic efficiency. 
    more » « less
  5. null (Ed.)
    Since passenger demand in urban transit systems is asymmetrically distributed across different periods in a day and different geographic locations across the cities, the tradeoff between vehicle operating costs and service quality has been a persistent problem in transit operational design. The emerging modular vehicle technology offers us a new perspective to solve this problem. Based on this concept, we propose a variable-capacity operation approach with modular transits for shared-use corridors, in which both dispatch headway and vehicle capacity are decision variables. This problem is rigorously formulated as a mixed integer linear programming model that aims to minimize the overall system cost, including passenger waiting time costs and vehicle operating costs. Because the proposed model is linear, the state-of-the-art commercial solvers (e.g., Gurobi) can be used to obtain the optimal solution of the investigated problem. With numerical experiments, we demonstrate the feasibility of the mathematical model, verify the effectiveness of the proposed model in reducing overall system costs in transit systems, as well as the robustness of the proposed model with different parameter settings. 
    more » « less