skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: When Variability Trumps Volatility: Optimal Control and Value of Reverse Logistics in Supply Chains with Multiple Flows of Product
Reverse logistics has been gaining recognition in practice (and theory) for helping companies better match supply with demand, and thus reduce costs in their supply chains. In this paper, we study reverse logistics from the perspective of a supply chain in which each location can initiate multiple flows of product. Our first objective is to jointly optimize ordering decisions pertaining to regular, reverse and expedited flows of product in a stochastic, multi-stage inventory model of a logistics supply chain, in which the physical transformation of the product is completed at the most upstream location in the system. Due to those multiple flows of product, the feasible region for the problem acquires multi-dimensional boundaries that lead to the curse of dimensionality. To address this challenge, we develop a different solution method that allows us to reduce the dimensionality of the feasible region and, subsequently, identify the structure of the optimal policy. We refer to this policy as a nested echelon base-stock policy, as decisions for different product flows are sequentially nested within each other. We show that this policy renders the model analytically and numerically tractable. Our results provide actionable policies for firms to jointly manage three different product flows in their supply chains, and allow us arrive at insights regarding the main drivers of the value of reverse logistics. One of our key findings is that, when it comes to the value generated by reverse logistics, demand variability (i.e., demand uncertainty across periods) matters more than demand volatility (i.e., demand uncertainty within each period). This is because, in the absence of demand variability, it is effectively never optimal to return product upstream, regardless of the level of inherent demand volatility. Our second objective is to extend our analysis to product transforming-supply chains, in which product transformation is allowed to occur at each location. In such a system, it becomes necessary to keep track of both the location and stage of completion of each unit of inventory, so that the number of state and decisions variables increases with the square of the number of locations in the system. To analyze such a supply chain, we first identify a policy that provides a lower bound on the total cost. Then, we establish a special decomposition of the objective cost function that allows us to propose a novel heuristic policy. We find that the performance gap of our heuristic policy relative to the lower-bounding policy averages less than 5% across a range of parameters and supply chain lengths.  more » « less
Award ID(s):
1644935
PAR ID:
10128753
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Manufacturing service operations management
ISSN:
1523-4614
Page Range / eLocation ID:
1=57
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The drug shortage crisis in the last decade not only increased health care costs but also jeopardized patients’ health across the United States. Ensuring that any drug is available to patients at health care centers is a problem that official health care administrators and other stakeholders of supply chains continue to face. Furthermore, managing pharmaceutical supply chains is very complex, as inevitable disruptions occur in these supply chains (exogenous factors), which are then followed by decisions members make after such disruptions (internal factors). Disruptions may occur due to increased demand, a product recall, or a manufacturer disruption, among which product recalls—which happens frequently in pharmaceutical supply chains—are least studied. We employ a mathematical simulation model to examine the effects of product recalls considering different disruption profiles, e.g., the propagation in time and space, and the interactions of decision makers on drug shortages to ascertain how these shortages can be mitigated by changing inventory policy decisions. We also measure the effects of different policy approaches on supply chain disruptions, using two performance measures: inventory levels and shortages of products at health care centers. We then analyze the results using an approach similar to data envelopment analysis to characterize the efficient frontier (best inventory policies) for varying cost ratios of the two performance measures as they correspond to the different disruption patterns. This analysis provides insights into the consequences of choosing an inappropriate inventory policy when disruptions take place. 
    more » « less
  2. This study examines the resilience and sustainability of supply chains amid global disruptions, with a particular focus on the essential role of reverse logistics. Through a game-theoretic approach, we explore manufacturer decisions to source from either reliable but expensive raw materials or cost-effective yet riskier recycled or recyclable materials from the reverse logistics channel. Our analysis outlines three primary sourcing strategies: sourcing exclusively from suppliers (SS), sourcing solely through retailer reverse channel (RS), and a balanced dual sourcing (DS) approach. Our findings reveal the economic viability that recycling outsourcing is influenced by market demand and disruption risks. Notably, in scenarios of constrained market potential, the cost advantage of using recycled materials from less reliable reverse logistics channels surpasses the risks associated with supply chain disruptions, suggesting a complex cost-benefit landscape amidst supply uncertainties. Moreover, the stability of suppliers emerges as a pivotal factor in strategic sourcing decisions, underscoring the need to consider both economic efficiencies and supply reliability. The study also evaluates the dynamic competition between manufacturers and retailers, shedding light on how strategic adjustments driven by sustainability and resilience goals can enhance profitability and sustainability. It was found that despite the threat of disruptions, manufacturers benefit more from engaging with risky reverse channels under specific conditions, underscoring the nuanced decision-making required in uncertain supply scenarios. This research advances sustainable supply chain management by highlighting strategic complexities and the need for understanding economic efficiencies and supply stability, offering insights for navigating disruptions and fostering resilient, sustainable supply chains. 
    more » « less
  3. This paper studies an inventory management problem faced by an upstream supplier that is in a collaborative agreement, such as vendor-managed inventory (VMI), with a retailer. A VMI partnership provides the supplier an opportunity to manage in- ventory for the supply chain in exchange for point-of-sales (POS)- and inventory-level information from the retailer. However, retailers typically possess superior local market information and as has been the case in recent years, are able to capture and analyze customer purchasing behavior beyond the traditional POS data. Such analyses provide the retailer access to market signals that are otherwise hard to capture using POS information. We show and quantify the implication of the financial obligations of each party in VMI that renders communication of such important market signals as noncredible. To help insti- tute a sound VMI collaboration, we propose learn and screen—a dynamic inventory mechanism—for the supplier to effectively manage inventory and information in the supply chain. The proposed mechanism combines the ability of the supplier to learn about market conditions from POS data (over multiple selling periods) and dynamically de- termine when to screen the retailer and acquire his private demand information. Inventory decisions in the proposed mechanism serve a strategic purpose in addition to their classic role of satisfying customer demand. We show that our proposed dynamic mechanism significantly improves the supplier’s expected profit and increases the efficiency of the overall supply chain operations under a VMI agreement. In addition, we determine the market conditions in which a strategic approach to VMI results in significant profit im- provements for both firms, particularly when the retailer has high market power (i.e., when the supplier highly depends on the retailer) and when the supplier has relatively less knowledge about the end customer/market compared with the retailer. 
    more » « less
  4. This work considers the incorporation of renewable ammonia manufacturing sites into existing ammonia supply chain networks while accounting for ammonia price uncertainty from existing producers. We propose a two-stage stochastic programming approach to determine the optimal investment decisions such that the ammonia demand is satisfied and the net present cost is minimized. We apply the proposed approach to a case study considering deploying in-state renewable ammonia manufacturing in Minnesota’s supply chain network. We find that accounting for price uncertainty leads to supply chains with more ammonia demand met via renewable production and thus lower costs from importing ammonia from existing producers. These results show that the in-state renewable production of ammonia can act as a hedge against the volatility of the conventional ammonia market. 
    more » « less
  5. We consider a multi-stage inventory system with stochastic demand and processing capacity constraints at each stage, for both finite-horizon and infinite-horizon, discounted-cost settings. For a class of such systems characterized by having the smallest capacity at the most downstream stage and system utilization above a certain threshold, we identify the structure of the optimal policy, which represents a novel variation of the order-up-to policy. We find the explicit functional form of the optimal order-up-to levels, and show that they depend (only) on upstream echelon inventories. We establish that, above the threshold utilization, this optimal policy achieves the decomposition of the multidimensional objective cost function for the system into a sum of single-dimensional convex functions. This decomposition eliminates the curse of dimensionality and allows us to numerically solve the problem. We provide a fast algorithm to determine a (tight) upper bound on this threshold utilization for capacity-constrained inventory problems with an arbitrary number of stages. We make use of this algorithm to quantify upper bounds on the threshold utilization for three-, four-, and five-stage capacitated systems over a range of model parameters, and discuss insights that emerge. 
    more » « less