skip to main content


Title: "It Looks Beautiful but Scary": How Low Vision People Navigate Stairs and Other Surface Level Changes
Walking in environments with stairs and curbs is potentially dangerous for people with low vision. We sought to understand what challenges low vision people face and what strategies and tools they use when navigating such surface level changes. Using contextual inquiry, we interviewed and observed 14 low vision participants as they completed navigation tasks in two buildings and through two city blocks. The tasks involved walking in- and outdoors, across four staircases and two city blocks. We found that surface level changes were a source of uncertainty and even fear for all participants. Besides the white cane that many participants did not want to use, participants did not use technology in the study. Participants mostly used their vision, which was exhausting and sometimes deceptive. Our findings highlight the need for systems that support surface level changes and other depth-perception tasks; they should consider low vision people's distinct experiences from blind people, their sensitivity to different lighting conditions, and leverage visual enhancements.  more » « less
Award ID(s):
1657315
NSF-PAR ID:
10100347
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 18)
Page Range / eLocation ID:
307 to 320
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Many people with low vision rely on screen-magnifier assistive technology to interact with productivity applications such as word processors, spreadsheets, and presentation software. Despite the importance of these applications, little is known about their usability with respect to low-vision screen-magnifier users. To fill this knowledge gap, we conducted a usability study with 10 low-vision participants having different eye conditions. In this study, we observed that most usability issues were predominantly due to high spatial separation between main edit area and command ribbons on the screen, as well as the wide span grid-layout of command ribbons; these two GUI aspects did not gel with the screen-magnifier interface due to lack of instantaneous WYSIWYG (What You See Is What You Get) feedback after applying commands, given that the participants could only view a portion of the screen at any time. Informed by the study findings, we developed MagPro, an augmentation to productivity applications, which significantly improves usability by not only bringing application commands as close as possible to the user's current viewport focus, but also enabling easy and straightforward exploration of these commands using simple mouse actions. A user study with nine participants revealed that MagPro significantly reduced the time and workload to do routine command-access tasks, compared to using the state-of-the-art screen magnifier. 
    more » « less
  2. null (Ed.)
    Many computing tasks, such as comparison shopping, two-factor authentication, and checking movie reviews, require using multiple apps together. On large screens, "windows, icons, menus, pointer" (WIMP) graphical user interfaces (GUIs) support easy sharing of content and context between multiple apps. So, it is straightforward to see the content from one application and write something relevant in another application, such as looking at the map around a place and typing walking instructions into an email. However, although today's smartphones also use GUIs, they have small screens and limited windowing support, making it hard to switch contexts and exchange data between apps. We introduce DoThisHere, a multimodal interaction technique that streamlines cross-app tasks and reduces the burden these tasks impose on users. Users can use voice to refer to information or app features that are off-screen and touch to specify where the relevant information should be inserted or is displayed. With DoThisHere, users can access information from or carry information to other apps with less context switching. We conducted a survey to find out what cross-app tasks people are currently performing or wish to perform on their smartphones. Among the 125 tasks that we collected from 75 participants, we found that 59 of these tasks are not well supported currently. DoThisHere is helpful in completing 95% of these unsupported tasks. A user study, where users are shown the list of supported voice commands when performing a representative sample of such tasks, suggests that DoThisHere may reduce expert users' cognitive load; the Query action, in particular, can help users reduce task completion time. 
    more » « less
  3. Key points

    The neuromotor system generates flexible motor patterns that can adapt to changes in our bodies or environment and also take advantage of assistance provided by the environment.

    We ask how energy minimization influences adaptive learning during human locomotion to improve economy when walking on a split‐belt treadmill. We use a model‐based approach to predict how people should adjust their walking pattern to take advantage of the assistance provided by the treadmill, and we validate these predictions empirically.

    We show that adaptation to a split‐belt treadmill can be explained as a process by which people reduce step length asymmetry to take advantage of the work performed by the treadmill to reduce metabolic cost.

    Our results also have implications for the evaluation of devices designed to reduce effort during walking, as locomotor adaptation may serve as a model approach to understand how people learn to take advantage of external assistance.

    Abstract

    In everyday tasks such as walking and running, we often exploit the work performed by external sources to reduce effort. Recent research has focused on designing assistive devices capable of performing mechanical work to reduce the work performed by muscles and improve walking function. The success of these devices relies on the user learning to take advantage of this external assistance. Although adaptation is central to this process, the study of adaptation is often done using approaches that seem to have little in common with the use of external assistance. We show in 16 young, healthy participants that a common approach for studying adaptation, split‐belt treadmill walking, can be understood from a perspective in which people learn to take advantage of mechanical work performed by the treadmill. Initially, during split‐belt walking, people step further forward on the slow belt than the fast belt which we measure as a negative step length asymmetry, but this asymmetry is reduced with practice. We demonstrate that reductions in asymmetry allow people to extract positive work from the treadmill, reduce the positive work performed by the legs, and reduce metabolic cost. We also show that walking with positive step length asymmetries, defined by longer steps on the fast belt, minimizes metabolic cost, and people choose this pattern after guided experience of a wide range of asymmetries. Our results suggest that split‐belt adaptation can be interpreted as a process by which people learn to take advantage of mechanical work performed by an external device to improve economy.

     
    more » « less
  4. Abstract Background

    Individualized, targeted, and intense training is the hallmark of successful gait rehabilitation in people post-stroke. Specifically, increasing use of the impaired ankle to increase propulsion during the stance phase of gait has been linked to higher walking speeds and symmetry. Conventional progressive resistance training is one method used for individualized and intense rehabilitation, but often fails to target paretic ankle plantarflexion during walking. Wearable assistive robots have successfullyassistedankle-specific mechanisms to increase paretic propulsion in people post-stroke, suggesting their potential to provide targetedresistanceto increase propulsion, but this application remains underexamined in this population. This work investigates the effects of targeted stance-phase plantarflexion resistance training with a soft ankle exosuit on propulsion mechanics in people post-stroke.

    Methods

    We conducted this study in nine individuals with chronic stroke and tested the effects of three resistive force magnitudes on peak paretic propulsion, ankle torque, and ankle power while participants walked on a treadmill at their comfortable walking speeds. For each force magnitude, participants walked for 1 min while the exosuit was inactive, 2 min with active resistance, and 1 min with the exosuit inactive, in sequence. We evaluated changes in gait biomechanics during the active resistance and post-resistance sections relative to the initial inactive section.

    Results

    Walking with active resistance increased paretic propulsion by more than the minimal detectable change of 0.8 %body weight at all tested force magnitudes, with an average increase of 1.29 ± 0.37 %body weight at the highest force magnitude. This improvement corresponded to changes of 0.13 ± 0.03 N m kg− 1in peak biological ankle torque and 0.26 ± 0.04 W kg− 1in peak biological ankle power. Upon removal of resistance, propulsion changes persisted for 30 seconds with an improvement of 1.49 ± 0.58 %body weight after the highest resistance level and without compensatory involvement of the unresisted joints or limb.

    Conclusions

    Targeted exosuit-applied functional resistance of paretic ankle plantarflexors can elicit the latent propulsion reserve in people post-stroke. After-effects observed in propulsion highlight the potential for learning and restoration of propulsion mechanics. Thus, this exosuit-based resistive approach may offer new opportunities for individualized and progressive gait rehabilitation.

     
    more » « less
  5. Many people struggle with mobility impairments due to lower limb amputations. To participate in society, they need to be able to walk on a wide variety of terrains, such as stairs, ramps, and level ground. Current lower limb powered prostheses require different control strategies for varying ambulation modes, and use data from mechanical sensors within the prosthesis to determine which ambulation mode the user is in. However, it can be challenging to distinguish between ambulation modes. Efforts have been made to improve classification accuracy by adding electromyography information, but this requires a large number of sensors, has a low signal-to-noise ratio, and cannot distinguish between superficial and deep muscle activations. An alternative sensing modality, A-mode ultrasound, can detect and distinguish between changes in superficial and deep muscles. It has also shown promising results in upper limb gesture classification. Despite these advantages, A-mode ultrasound has yet to be employed for lower limb activity classification. Here we show that A- mode ultrasound can classify ambulation mode with comparable, and in some cases, superior accuracy to mechanical sensing. In this study, seven transfemoral amputee subjects walked on an ambulation circuit while wearing A-mode ultrasound transducers, IMU sensors, and their passive prosthesis. The circuit consisted of sitting, standing, level-ground walking, ramp ascent, ramp descent, stair ascent, and stair descent, and a spatial–temporal convolutional network was trained to continuously classify these seven activities. Offline continuous classification with A-mode ultrasound alone was able to achieve an accuracy of 91.8±3.4%, compared with 93.8±3.0%, when using kinematic data alone. Combined kinematic and ultrasound produced 95.8±2.3% accuracy. This suggests that A-mode ultrasound provides additional useful information about the user’s gait beyond what is provided by mechanical sensors, and that it may be able to improve ambulation mode classification. By incorporating these sensors into powered prostheses, users may enjoy higher reliability for their prostheses, and more seamless transitions between ambulation modes. 
    more » « less