The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert datamore »
Predicting the future is hard and other lessons from a population time series data science competition.
Population forecasting, in which past dynamics are used to make predictions of future state, has many real-world applications. While time series of animal abundance are often modeled in ways that aim to capture the underlying biological processes involved, doing so is neither necessary nor sufficient for making good predictions. Here we report on a data science competition focused on modelling time series of Antarctic penguin abundance. We describe the best performing submitted models and compare them to a Bayesian model previously developed by domain experts and build an ensemble model that outperforms the individual component models in prediction accuracy. The top performing models varied tremendously in model complexity, ranging from very simple forward extrapolations of average growth rate to ensembles of models integrating recently developed machine learning techniques. Despite the short time frame for the competition, four of the submitted models outperformed the model previously created by the team of domain experts. We discuss the structure of the best performing models and components therein that might be useful for other ecological applications, the benefit of creating ensembles of models for ecological prediction, and the costs and benefits of including detailed domain expertise in ecological modelling. Additionally, we discuss the benefits more »
- Award ID(s):
- 1633299
- Publication Date:
- NSF-PAR ID:
- 10100635
- Journal Name:
- Ecological informatics
- Volume:
- 48
- Page Range or eLocation-ID:
- 1-11
- ISSN:
- 1574-9541
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Obeid, Iyad Selesnick (Ed.)The Temple University Hospital EEG Corpus (TUEG) [1] is the largest publicly available EEG corpus of its type and currently has over 5,000 subscribers (we currently average 35 new subscribers a week). Several valuable subsets of this corpus have been developed including the Temple University Hospital EEG Seizure Corpus (TUSZ) [2] and the Temple University Hospital EEG Artifact Corpus (TUAR) [3]. TUSZ contains manually annotated seizure events and has been widely used to develop seizure detection and prediction technology [4]. TUAR contains manually annotated artifacts and has been used to improve machine learning performance on seizure detection tasks [5]. In this poster, we will discuss recent improvements made to both corpora that are creating opportunities to improve machine learning performance. Two major concerns that were raised when v1.5.2 of TUSZ was released for the Neureka 2020 Epilepsy Challenge were: (1) the subjects contained in the training, development (validation) and blind evaluation sets were not mutually exclusive, and (2) high frequency seizures were not accurately annotated in all files. Regarding (1), there were 50 subjects in dev, 50 subjects in eval, and 592 subjects in train. There was one subject common to dev and eval, five subjects common to dev andmore »
-
Obeid, I. (Ed.)The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do notmore »
-
Nuclear magnetic resonance (NMR) is one of the primary techniques used to elucidate the chemical structure, bonding, stereochemistry, and conformation of organic compounds. The distinct chemical shifts in an NMR spectrum depend upon each atom's local chemical environment and are influenced by both through-bond and through-space interactions with other atoms and functional groups. The in silico prediction of NMR chemical shifts using quantum mechanical (QM) calculations is now commonplace in aiding organic structural assignment since spectra can be computed for several candidate structures and then compared with experimental values to find the best possible match. However, the computational demands of calculating multiple structural- and stereo-isomers, each of which may typically exist as an ensemble of rapidly-interconverting conformations, are expensive. Additionally, the QM predictions themselves may lack sufficient accuracy to identify a correct structure. In this work, we address both of these shortcomings by developing a rapid machine learning (ML) protocol to predict 1 H and 13 C chemical shifts through an efficient graph neural network (GNN) using 3D structures as input. Transfer learning with experimental data is used to improve the final prediction accuracy of a model trained using QM calculations. When tested on the CHESHIRE dataset, the proposed modelmore »
-
Belgrano, Andrea (Ed.)We found a startling correlation (Pearson ρ > 0.97) between a single event in daily sea surface temperatures each spring, and peak fish egg abundance measurements the following summer, in 7 years of approximately weekly fish egg abundance data collected at Scripps Pier in La Jolla California. Even more surprising was that this event-based result persisted despite the large and variable number of fish species involved (up to 46), and the large and variable time interval between trigger and response (up to ~3 months). To mitigate potential over-fitting, we made an out-of-sample prediction beyond the publication process for the peak summer egg abundance observed at Scripps Pier in 2020 (available on bioRxiv). During peer-review, the prediction failed, and while it would be tempting to explain this away as a result of the record-breaking toxic algal bloom that occurred during the spring (9x higher concentration of dinoflagellates than ever previously recorded), a re-examination of our methodology revealed a potential source of over-fitting that had not been evaluated for robustness. This cautionary tale highlights the importance of testable true out-of-sample predictions of future values that cannot (even accidentally) be used in model fitting, and that can therefore catch model assumptions that maymore »