skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Multimodal Learning Analytics for Predicting Student Collaboration Satisfaction in Collaborative Game-Based Learning
Collaborative game-based learning offers opportunities for students to participate in small group learning experiences that foster knowledge sharing, problem solving, and engagement. Student satisfaction with their collaborative experiences plays a pivotal role in shaping positive learning outcomes and is a critical factor in group success during learning. Gauging students申f satisfaction within collaborative learning contexts can offer insights into student engagement and participation levels while affording practitioners the ability to provide targeted interventions or scaffolding. In this paper,we propose a framework for inferring student collaboration satisfaction with multimodal learning analytics from collaborative interactions. Utilizing multimodal data collected from 50 middle school students engaged in collaborative game-based learning, we predict student collaboration satisfaction. We first evaluate the performance of baseline models on individual modalities for insight into which modalities are most informative. We then devise a multimodal deep learning model that leverages a cross-attention mechanism to attend to salient information across modalities to enhance collaboration satisfaction prediction. Finally,we conduct ablation and feature importance analysis to understand which combination of modalities and features is most effective. Findings indicate that various combinations of data sources are highly beneficial for student collaboration satisfaction prediction.  more » « less
Award ID(s):
1840120 1839966
PAR ID:
10568100
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Benjamin, Paaßen; Carrie, Demmans Epp
Publisher / Repository:
International Educational Data Mining Society
Date Published:
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Irgens, G; Knight, S (Ed.)
    Wearable positioning sensors are enabling unprecedented opportunities to model students’ procedural and social behaviours during collaborative learning tasks in physical learning spaces. Emerging work in this area has mainly focused on modelling group-level interactions from low-level x-y positioning data. Yet, little work has utilised such data to automatically identify individual-level differences among students working in co-located groups in terms of procedural and social aspects such as task prioritisation and collaboration dynamics, respectively. To address this gap, this study characterised key differences among 124 students’ procedural and social behaviours according to their perceived stress, collaboration, and task satisfaction during a complex group task using wearable positioning sensors and ordered networked analysis. The results revealed that students who demonstrated more collaborative behaviours were associated with lower stress and higher collaboration satisfaction. Interestingly, students who worked individually on the primary and secondary learning tasks reported lower and higher task satisfaction, respectively. These findings can deepen our understanding of students’ individual-level behaviours and experiences while learning in groups. 
    more » « less
  2. Purpose The authors explored shifts in social interactions, content engagement and history learning as students who were studying one pandemic simultaneously experienced another. This paper aims to understand how the Net.Create network visualization tool would support students as they tried to understand the many complex interactions in a historical text in a remote learning environment and how sustained knowledge building using Net.Create would shape student attitudes toward remote learning, collaboration and engagement. Design/methodology/approach This paper explores changes in engagement and learning in a survey-level history course on the black death after a shift to remote learning during the COVID-19 pandemic. The authors used activity theory to focus the adaptation of Net.Create, a web-based collaborative social-network-analysis tool and to understand how it supported group-based remote learning. The authors describe how the redesigned activities sustained engagement with historical content and report coded student network entries, reading responses and surveys to illustrate changes in engagement and learning. Findings The results suggest that students benefit from personal connections to historical content and their peers. Net.Create supported both through collaborative knowledge-building activities and reflection on how their quarantine experiences compared to the historical content they read. It is possible to avoid student frustrations with traditional “group work” even in a remote environment by supporting collaborative learning using Net.Create and a mix of individual and group contributions. Originality/value This is the first use of a collaborative network visualization tool to support large classroom interaction and engagement with history content at the undergraduate level. 
    more » « less
  3. Pedagogical agents offer significant promise for engaging students in learning. In this paper, we investigate students’ conversational interactions with a pedagogical agent in a game-based learning environment for middle school sci- ence education. We utilize word embeddings of student-agent conversations along with features distilled from students’ in-game actions to induce predictive models of student engagement. An evaluation of the models’ accuracy and early prediction performance indicates that features derived from students’ conversa- tions with the pedagogical agent yield the highest accuracy for predicting student engagement. Results also show that combining student problem-solving features and conversation features yields higher performance than a problem solving-only feature set. Overall, the findings suggest that student-agent conversations can greatly enhance student models for game-based learning environments. 
    more » « less
  4. Mills, Caitlin; Alexandron, Giora; Taibi, Davide; Lo_Bosco, Giosuè; Paquette, Luc (Ed.)
    Understanding the relationship between student behaviors and learning outcomes is crucial for designing effective collaborative learning environments. However, collaborative learning analytics poses significant challenges, not only due to the complex interplay between collaborative problem-solving and collaborative dialogue but also due to the need for model interpretability. To address these challenges, this paper introduces a multi-view predictive student modeling framework using causal graph discovery. We first extract interpretable behavioral features from students' collaborative dialogue data and game trace logs to predict student learning within a collaborative game-based learning environment. We then apply constraint-based sequential pattern mining to identify cognitive and social behavioral patterns in student's data to improve predictive power. We employ unified causal modeling for interpreting model outputs, using causal discovery methods to reveal key interactions among student behaviors that significantly contribute to predicting learning outcomes and identifying frequent collaborative problem-solving skills. Evaluations of the predictive student modeling framework show that combining features from dialogue and in-game behaviors improves the prediction of student learning gains. The findings highlight the potential of multi-view behavioral data and causal analysis to improve both the effectiveness and the interpretability of collaborative learning analytics. 
    more » « less
  5. Abstract Understanding students’ multi-party epistemic and topic based-dialogue contributions, or how students present knowledge in group-based chat interactions during collaborative game-based learning, offers valuable insights into group dynamics and learning processes. However, manually annotating these contributions is labor-intensive and challenging. To address this, we develop an automated method for recognizing dialogue acts from text chat data of small groups of middle school students interacting in a collaborative game-based learning environment. Our approach utilizes dual contrastive learning and label-aware data augmentation to fine-tune large language models’ underlying embedding representations within a supervised learning framework for epistemic and topic-based dialogue act classification. Results show that our method achieves a performance improvement of 4% to 8% over baseline methods in two key classification scenarios. These findings highlight the potential for automated dialogue act recognition to support understanding of how meaning-making occurs by focusing on the development and evolution of knowledge in group discourse, ultimately providing teachers with actionable insights to better support student learning. 
    more » « less