skip to main content


Title: Implementing Mathematical Mindsets in a High School Mathematics Classroom
Mathematical mindset theory (Boaler, 2015) indicates student achievement in mathematics has the potential to improve, through the use of, student engagement, collaborative groups, and open-ended problem sets that allow students to discover their own understanding of mathematics. This presentation explores how and when I used methods of mathematical mindsets in my classroom, when it appeared that these types of lessons were not appropriate, and student reactions to lessons using mathematical mindsets versus lessons that did not incorporate this theoretical framework. Lessons learned are also explored.  more » « less
Award ID(s):
1758371
NSF-PAR ID:
10100819
Author(s) / Creator(s):
Date Published:
Journal Name:
NSF Noyce Conference 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the early 2000s, our primarily undergraduate, white institution (PUI/PWI), began recruiting and enrolling higher numbers of students of color and first-generation college students. However, like many of our peer institutions, our established pedagogies and mindsets did not provide these students an educational experience to enable them to persist and thrive in STEM. Realizing the need to systematically address our lack of inclusivity in science majors, in 2012 faculty from multiple disciplines developed the Science, Math, and Research Training (SMART) program. Here, we describe an educational innovation, originally funded by a grant from the Howard Hughes Medical Institute, designed to support and retain students of color, first generation college students, and other students with marginalized identities in the sciences through a cohort-based, integrated, and inclusive first-year experience focused on community and sense of belonging. The SMART program engages first-year students with semester-long themed courses around “real world” problems of antibiotic resistance and viral infections while integrating the fields of Biology, Chemistry, Mathematics, and an optional Computer Science component. In the decade since its inception, 97% of SMART students have graduated or are on track to graduate, with 80.9% of these students earning a major in a STEM discipline. Here, we present additional student outcomes since the initiation of this program, results of the student self-evaluative surveys SALG and CURE, and lessons we have learned from a decade of this educational experience. 
    more » « less
  2. Olanoff, D. ; Johnson, K. ; & Spitzer, S. (Ed.)
    How does the design of lessons impact the types of questions teachers and students ask during enacted high school mathematics lessons? In this study, we present data that suggests that lessons designed with the mathematical story framework to elicit a specific aesthetic response (“MCLEs”) having a positive influence on the types of teacher and student questions they ask during the lesson. Our findings suggest that when teachers plan and enact lessons with the mathematical story framework, teachers and students are more likely to ask questions that explore mathematical relationships and focus on meaning making. In addition, teachers are less likely to ask short recall or procedural questions in MCLEs. These findings point to the role of lesson design in the quality of questions asked by teachers and students. 
    more » « less
  3. Why do some mathematics lessons captivate high school students and others not? This study explores this question by comparing how the content unfolds in the lessons that students rated highest with respect to their aesthetic affordances (e.g., using terms like “intriguing,” “surprising”) with those the same students rated lowest with respect to their aesthetic affordances (e.g., “just ok,” “dull”). Using a framework that interprets the unfolding content across a lesson as a mathematical story, we examine how some lessons can provoke curiosity or enable surprise. We identify eight characteristics that distinguish captivating lessons and show how some, such as the average number of questions under consideration at any point in the lesson, are strongly related to student aesthetic experiences. In addition, the lessons that students described as more interesting included more instances of misdirection, such as when students’ false assumptions provide opportunities for surprising results. These findings point to the characteristics of future lesson designs that could enable more students to experience curiosity and wonder in secondary mathematics classrooms. 
    more » « less
  4. Sacristán, A.I. ; Cortés-Zavala, J.C. ; Ruiz-Arias, P.M. (Ed.)
    Teachers in the elementary grades often teach all subjects and are expected to have appropriate content knowledge of a wide range of disciplines. Current recommendations suggest teachers should integrate multiple disciplines into the same lesson, for instance, when teaching integrated STEM lessons. Although there are many similarities between STEM fields, there are also epistemological differences to be understood by students and teachers. This study investigated teachers’ beliefs about teaching mathematics and science using argumentation and the epistemological and contextual factors that may have influenced these beliefs. Teachers’ beliefs about different epistemological underpinnings of mathematics and science, along with contextual constraints, led to different beliefs and intentions for practice with respect to argumentation in these disciplines. The contextual constraint of testing and the amount of curriculum the teachers perceived as essential focused more attention on the teaching of mathematics, which could be seen as benefiting student learning of mathematics. On the other hand, the perception of science as involving wonder, curiosity, and inherently positive and interesting ideas may lead to the creation of a more positive learning environment for the teaching of science. These questions remain open and need to be studied further: What are the consequences of perceiving argumentation in mathematics as limited to concepts already well-understood? Can integrating the teaching of mathematics and science lead to more exploratory and inquiry-based teaching of mathematical ideas alongside scientific ones? 
    more » « less
  5. Karunakaran, S.S. ; Reed, Z. ; Higgins, A. (Ed.)
    The Mathematical Education of Teachers as an Application of Undergraduate Mathematics project provides lessons integrated into various mathematics major courses that incorporate mathematics teaching connections as a legitimate application area of undergraduate mathematics. One feature of the lessons involves posing tasks that require undergraduates to interpret or analyze the work of another student. This paper reports on thematic analysis of hour-long interviews for eight participants enrolled in an undergraduate abstract algebra course from two different implementation sites. We focus on student work and reactions to these interpreting or analyzing student thinking (AST) applications as they relate to their perceptions regarding the use of AST applications as a mechanism to both deepen their content knowledge and improve their skills for communicating mathematics. Several participants identify positive benefits, but more research is needed to determine the how to incorporate AST applications to accommodate some participants’ reluctance to engage in new mathematical contexts. 
    more » « less