skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Implementing Mathematical Mindsets in a High School Mathematics Classroom
Mathematical mindset theory (Boaler, 2015) indicates student achievement in mathematics has the potential to improve, through the use of, student engagement, collaborative groups, and open-ended problem sets that allow students to discover their own understanding of mathematics. This presentation explores how and when I used methods of mathematical mindsets in my classroom, when it appeared that these types of lessons were not appropriate, and student reactions to lessons using mathematical mindsets versus lessons that did not incorporate this theoretical framework. Lessons learned are also explored.  more » « less
Award ID(s):
1758371
PAR ID:
10100819
Author(s) / Creator(s):
Date Published:
Journal Name:
NSF Noyce Conference 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lamberg, T.; Moss, D. (Ed.)
    The positive relationship between students’ attitudes toward mathematics and mathematics achievement is well documented. Yet there is a worsening problem of low appeal of mathematics especially at the secondary level. Therefore, in this paper we focus on three high school students who report a strong dislike of mathematics. By analyzing student surveys, interviews, and lesson observation data, we examined how some mathematical lessons improved these students’ experiences (i.e., their aesthetic dimensions). We found that while student preferences varied, each student was interested in lessons that centered them as sense-makers and in which the content unfolded with suspense. Such lessons led to positive aesthetic responses such as surprise, curiosity, and satisfaction. Thus, lessons can be designed in which even students with the most negative views of mathematics can find mathematical concepts interesting. 
    more » « less
  2. Karunakaran, S.S.; Reed, Z.; Higgins, A. (Ed.)
    The Mathematical Education of Teachers as an Application of Undergraduate Mathematics project provides lessons integrated into various mathematics major courses that incorporate mathematics teaching connections as a legitimate application area of undergraduate mathematics. One feature of the lessons involves posing tasks that require undergraduates to interpret or analyze the work of another student. This paper reports on thematic analysis of hour-long interviews for eight participants enrolled in an undergraduate abstract algebra course from two different implementation sites. We focus on student work and reactions to these interpreting or analyzing student thinking (AST) applications as they relate to their perceptions regarding the use of AST applications as a mechanism to both deepen their content knowledge and improve their skills for communicating mathematics. Several participants identify positive benefits, but more research is needed to determine the how to incorporate AST applications to accommodate some participants’ reluctance to engage in new mathematical contexts. 
    more » « less
  3. Olanoff, D.; Johnson, K.; & Spitzer, S. (Ed.)
    How does the design of lessons impact the types of questions teachers and students ask during enacted high school mathematics lessons? In this study, we present data that suggests that lessons designed with the mathematical story framework to elicit a specific aesthetic response (“MCLEs”) having a positive influence on the types of teacher and student questions they ask during the lesson. Our findings suggest that when teachers plan and enact lessons with the mathematical story framework, teachers and students are more likely to ask questions that explore mathematical relationships and focus on meaning making. In addition, teachers are less likely to ask short recall or procedural questions in MCLEs. These findings point to the role of lesson design in the quality of questions asked by teachers and students. 
    more » « less
  4. Why do some mathematics lessons captivate high school students and others not? This study explores this question by comparing how the content unfolds in the lessons that students rated highest with respect to their aesthetic affordances (e.g., using terms like “intriguing,” “surprising”) with those the same students rated lowest with respect to their aesthetic affordances (e.g., “just ok,” “dull”). Using a framework that interprets the unfolding content across a lesson as a mathematical story, we examine how some lessons can provoke curiosity or enable surprise. We identify eight characteristics that distinguish captivating lessons and show how some, such as the average number of questions under consideration at any point in the lesson, are strongly related to student aesthetic experiences. In addition, the lessons that students described as more interesting included more instances of misdirection, such as when students’ false assumptions provide opportunities for surprising results. These findings point to the characteristics of future lesson designs that could enable more students to experience curiosity and wonder in secondary mathematics classrooms. 
    more » « less
  5. Sacristán, A.I. (Ed.)
    Centering class discussions around student mathematical thinking has been identified as one of the critical components of teaching that engages students in justifying and generalizing. This report shares analysis from a larger project aimed at describing and quantifying student and teacher components of productive classrooms at a fine-grain level. We share results from this analysis of 39 mathematics lessons with a focus working with public records of students’ mathematical thinking. 
    more » « less