Abstract This study reports the superior performance of graphene nanosheet (GNS) materials over Vulcan XC incorporated as a cathode catalyst in Li–O2 battery. The GNSs employed were synthesized from a novel, eco-friendly, and cost-effective technique involving chamber detonation of oxygen (O2) and acetylene (C2H2) precursors. Two GNS catalysts i.e., GNS-1 and GNS-2 fabricated with 0.3 and 0.5 O2/C2H2 precursor molar ratios, respectively, were utilized in this study. Specific surface area (SSA) analysis revealed significantly higher SSA and total pore volume for GNS-1 (180 m2 g−1, 0.505 cm3 g−1) as compared with GNS-2 (19 m2 g−1, 0.041 cm3 g−1). GNS-1 exhibited the highest discharge capacity (4.37 Ah g-1) and superior cycling stability compared with GNS-2 and Vulcan XC. Moreover, GNS-1 demonstrated promising performance at higher current densities (0.2 and 0.3 mA cm−2) and with various organic electrolytes. The superior performance of GNS-1 can be ascribed to its higher mesopore volume, SSA, and optimum wettability compared to its counterparts.
more »
« less
Experimental Studies of Carbon Electrodes With Various Surface Area for Li–O2 Batteries
Li−O2 batteries with carbon electrodes made from three commercial carbons and carbon made from waste tea leaves are investigated in this study. The waste tea leaves are recycled from household tea leaves and activated using KOH. The carbon materials have various specific surface areas, and porous structures are characterized by the N2 adsorption/desorption. Vulcan XC 72 carbon shows a higher specific surface area (264.1 m2/g) than the acetylene black (76.5 m2/g) and Super P (60.9 m2/g). The activated tea leaves have an extremely high specific surface area of 2868.4 m2/g. First, we find that the commercial carbons achieve similar discharge capacities of ∼2.50 Ah/g at 0.5 mA/cm2. The micropores in carbon materials result in a high specific surface area but cannot help to achieve higher discharge capacity because it cannot accommodate the solid discharge product (Li2O2). Mixing the acetylene black and the Vulcan XC 72 improves the discharge capacity due to the optimized porous structure. The discharge capacity increases by 42% (from 2.73 ± 0.46 to 3.88 ± 0.22 Ah/g) at 0.5 mA/cm2 when the mass fraction of Vulcan XC 72 changes from 0 to 0.3. Second, the electrode made from activated tea leaves is demonstrated for the first time in Li−O2 batteries. Mixtures of activated tea leaves and acetylene black confirm that mixtures of carbon material with different specific surface areas can increase the discharge capacity. Moreover, carbon made from recycled tea leaves can reduce the cost of the electrode, making electrodes more economically achievable. This study practically enhances the discharge capacity of Li−O2 batteries using mixed carbons and provides a method for fabricating carbon electrodes with lower cost and better environmental friendliness.
more »
« less
- Award ID(s):
- 1833048
- PAR ID:
- 10101019
- Date Published:
- Journal Name:
- Journal of Electrochemical Energy Conversion and Storage
- Volume:
- 16
- Issue:
- 4
- ISSN:
- 2381-6872
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract High surface area graphitic mesoporous carbons (M‐mGMC; M=Ni, Fe, Co or Ni‐Fe) were synthesizedviacatalytic graphitization using a hard template based synthesis method. In house prepared SBA‐15 silica material was impregnated with metal precursors to obtain M/SBA‐15, template for M‐mGMC synthesis. These materials were studied using different material characterization techniques, such as nitrogen adsorption desorption (BET), X‐ray diffraction (XRD) analysis, Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Specific surface area ranging from 1,227.9 m2g−1to 1,320.7 m2g−1was observed for four M‐mGMCs. Raman spectroscopy, XPS and wide angle XRD suggested presence of graphitic structure in these materials along with disorders. Electrocatalytic performance of these materials along with conventional carbon black (Vulcan XC‐72) were evaluated in a single‐stack proton exchange membrane fuel cell (PEMFC). Pt/NiFe‐mGMC exhibited enhanced electrocatalytic activity compared to Pt/Ni‐mGMC, Pt/Fe‐mGMC and Pt/Co‐mGMC electrocatalysts. However, Pt/NiFe‐mGMC lacked adequate proton transport in membrane electrode assembly (MEA) compared to Pt/Vulcan XC‐72. This exploratory study showed that NiFe‐mGMC may find application as electrocatalyst support material in PEMFC.more » « less
-
null (Ed.)Rice hull ash (RHA, an agricultural waste) produced during combustion of rice hulls to generate electricity consists (following dilute acid leaching) of high surface area SiO2 (80–90 wt%) and 10–20 wt% carbon (80 m2 g−1 total). RHA SiO2 is easily extracted by distillation (spirosiloxane) producing SDRHA, which offers an opportunity to develop “green” hybrid lithium-ion capacitors (LICs) electrodes. SDRHA consists of 50–65 wt% SiO2 with the remainder carbon with a specific surface area of ≈220 m2 g−1. SDRHA microstructure presents a highly irregular and disordered nanocomposite composed of nanosilica closely connected via graphene layers enhancing Li-ion mobility during charge/discharge process. SDRHA electrochemicalproperties were assessed by assembling Li/SDRHA half-cells and LiNi0.6Co0.2Mn0.2O2 (NMC622)-SDRHA full-cells. The half-cell delivered a high specific capacity of 250 mA h g−1 at 0.5C and retained a capacity of 200 mA h g−1 at 2C for 400 h. In contrast to the poor cycle performance of NMC based batteries at high C-rates, the hybrid full-cell demonstrated a high specific capacitance of 200 F g−1 at 4C. In addition, both the half and full hybrid cells demonstrate excellent coulombic efficiencies (∼100%). These results suggest that low cost and environmentally friendly SDRHA, may serve as a potentialalternative electrode material for LICs.more » « less
-
In this study, we are reporting the impact of the incorporation of ferroelectric nanoparticles (FNPs), such as BaTiO3 (BTO), BiFeO3 (BFO), Bi4NdTi3Fe0.7Ni0.3O15 (BNTFN), and Bi4NdTi3Fe0.5Co0.5O15 (BNTFC), as well as the mass loading of sulfur to fabricated solvent-free sulfur/holey graphene-carbon black/polyvinylidene fluoride (S/FNPs/CBhG/PVDF) composite electrodes to achieve high areal capacity for lithium-sulfur (Li-S) batteries. The dry-press method was adopted to fabricate composite cathodes. The hG, a conductive and lightweight scaffold derived from graphene, served as a matrix to host sulfur and FNPs for the fabrication of solvent-free composites. Raman spectra confirmed the dominant hG framework for all the composites, with strong D, G, and 2D bands. The surface morphology of the fabricated cathode system showed a homogeneous distribution of FNPs throughout the composites, confirmed by the EDAX spectra. The observed Li+ ion diffusion coefficient for the composite cathode started at 2.17 × 10−16 cm2/s (S25(CBhG)65PVDF10) and reached up to the highest value (4.15 × 10−15 cm2/s) for S25BNTFC5(CBhG)60PVDF10. The best discharge capacity values for the S25(CBhG)65PVDF10 and S25BNTFC5(CBhG)60PVDF10 composites started at 1123 mAh/gs and 1509 mAh/gs and dropped to 612 mAh/gs and 572 mAh/gs, respectively, after 100 cycles; similar behavior was exhibited by the other composites that were among the best. These are better values than those previously reported in the literature. The incorporation of ferroelectric nanoparticles in the cathodes of Li-S batteries reduced the rapid formation of polysulfides due to their internal electric fields. The areal capacity for the S25(CBhG)65PVDF10 composites was 4.84 mAh/cm2 with a mass loading of 4.31 mgs/cm2, while that for the S25BNTFC5(CBhG)60PVDF10 composites was 6.74 mAh/cm2 with a mass loading of 4.46 mgs/cm2. It was confirmed that effective FNP incorporation within the S cathode improves the cycling response and stability of cathodes, enabling the high performance of Li-S batteries.more » « less
-
Lithium-sulfur (Li-S) batteries suffer from poor utilization of active material and short cycle life due to the complicated multi-step reaction mechanisms. Herein, three conditional cycling methods, i.e. asymmetrical cycling, constant voltage (CV) discharge cycling, and partial cycling are designed in order to increase the cyclability of Li-S batteries. It is found that the solid deposition process that takes place during the lower plateau of discharge is the major limiting step for achieving high discharge capacity and cycle retention, and the cathode surface coverage can be deferred by applying an optimal discharge/charge rate and CV discharge cycling. The asymmetrical cycling renders a specific capacity of ca. 700 mAh g-1 after 200 cycles, 30% higher than that under symmetrical cycling, while applying a CV discharge cycling enables a full retention of target specific capacity of ca. 800 mAh g-1 over 50 cycles. The partial cycling with a low number of phase transformation steps and reduced surface coverage at the end of discharge/charge also enhances cyclability. This work paves the way for understanding and improving the cycling performance of Li-S batteries without increasing the cost of electrode design or changing the configuration of the cell.more » « less
An official website of the United States government

