skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seismic data denoising by deep-residual networks
Deep learning leverages multi-layer neural networks architecture and demonstrates superb power in many machine learning applications. The deep denoising autoencoder technique extracts better coherent features from the seismic data. The technique allows us to automatically extract low-dimensional features from high dimensional feature space in a non-linear, data-driven, and unsupervised way. A properly trained denoising autoencoder takes a partially corrupted input and recovers the original undistorted input. In this paper, a novel autoencoder built upon the deep residual network is proposed to perform noise attenuation on the seismic data. We evaluate the proposed method with synthetic datasets and the result confirms the effective denoising performance of the proposed approach.  more » « less
Award ID(s):
1746824
PAR ID:
10101074
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
SEG Technical Program Expanded Abstracts 2018
Page Range / eLocation ID:
4593 to 4597
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Advances in machine learning (ML) techniques and computational capacity have yielded state‐of‐the‐art methodologies for processing, sorting, and analyzing large seismic data sets. In this study, we consider an application of ML for automatically identifying dominant types of impulsive seismicity contained in observations from a 34‐station broadband seismic array deployed on the Ross Ice Shelf (RIS), Antarctica from 2014 to 2017. The RIS seismic data contain signals and noise generated by many glaciological processes that are useful for monitoring the integrity and dynamics of ice shelves. Deep clustering was employed to efficiently investigate these signals. Deep clustering automatically groups signals into hypothetical classes without the need for manual labeling, allowing for the comparison of their signal characteristics and spatial and temporal distribution with potential source mechanisms. The method uses spectrograms as input and encodes their salient features into a lower‐dimensional latent representation using an autoencoder, a type of deep neural network. For comparison, two clustering methods are applied to the latent data: a Gaussian mixture model (GMM) and deep embedded clustering (DEC). Eight classes of dominant seismic signals were identified and compared with environmental data such as temperature, wind speed, tides, and sea ice concentration. The greatest seismicity levels occurred at the RIS front during the 2016 El Niño summer, and near grounding zones near the front throughout the deployment. We demonstrate the spatial and temporal association of certain classes of seismicity with seasonal changes at the RIS front, and with tidally driven seismicity at Roosevelt Island. 
    more » « less
  2. null (Ed.)
    Abstract Deep neural networks provide state-of-the-art performance for image denoising, where the goal is to recover a near noise-free image from a noisy observation. The underlying principle is that neural networks trained on large data sets have empirically been shown to be able to generate natural images well from a low-dimensional latent representation of the image. Given such a generator network, a noisy image can be denoised by (i) finding the closest image in the range of the generator or by (ii) passing it through an encoder-generator architecture (known as an autoencoder). However, there is little theory to justify this success, let alone to predict the denoising performance as a function of the network parameters. In this paper, we consider the problem of denoising an image from additive Gaussian noise using the two generator-based approaches. In both cases, we assume the image is well described by a deep neural network with ReLU activations functions, mapping a $$k$$-dimensional code to an $$n$$-dimensional image. In the case of the autoencoder, we show that the feedforward network reduces noise energy by a factor of $O(k/n)$. In the case of optimizing over the range of a generative model, we state and analyze a simple gradient algorithm that minimizes a non-convex loss function and provably reduces noise energy by a factor of $O(k/n)$. We also demonstrate in numerical experiments that this denoising performance is, indeed, achieved by generative priors learned from data. 
    more » « less
  3. Plant disease is one of many obstacles encountered in the field of agriculture. Machine learning models have been used to classify and detect diseases among plants by analyzing and extracting features from plant images. However, a common problem for many models is that they are trained on clean laboratory images and do not exemplify real conditions where noise can be present. In addition, the emergence of adversarial noise that can mislead models into wrong predictions poses a severe challenge to developing preserved models against noisy environments. In this paper, we propose an end-to-end robust plant disease detection framework that combines a DenseNet-based classification with a vigorous deep learning denoising model. We validate a variety of deep learning denoising models and adopt the Real Image Denoising network (RIDnet). The experiments have shown that the proposed denoising classification framework for plant disease detection is more robust against noisy or corrupted input images compared to a single classification model and can also successfully defend against adversarial noises in images. 
    more » « less
  4. In this paper, we propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big system data. First, we perform a preliminary analysis for a big dataset from China Mobile, and use traffic load as an example to show non-zero temporal autocorrelation and non-zero spatial correlation among neighboring Base Stations (BSs), which motivate us to discover both temporal and spatial dependencies in our study. Then we present a hybrid deep learning model for spatiotemporal prediction, which includes a novel autoencoder-based deep model for spatial modeling and Long Short-Term Memory units (LSTMs) for temporal modeling. The autoencoder-based model consists of a Global Stacked AutoEncoder (GSAE) and multiple Local SAEs (LSAEs), which can offer good representations for input data, reduced model size, and support for parallel and application-aware training. Moreover, we present a new algorithm for training the proposed spatial model. We conducted extensive experiments to evaluate the performance of the proposed model using the China Mobile dataset. The results show that the proposed deep model significantly improves prediction accuracy compared to two commonly used baseline methods, ARIMA and SVR. We also present some results to justify effectiveness of the autoencoder-based spatial model. 
    more » « less
  5. Genotype imputation, where missing genotypes can be computationally imputed, is an essential tool in genomic analysis ranging from genome wide associations to phenotype prediction. Traditional genotype imputation methods are typically based on haplotype-clustering algorithms, hidden Markov models (HMMs), and statistical inference. Deep learning-based methods have been recently reported to suitably address the missing data problems in various fields. To explore the performance of deep learning for genotype imputation, in this study, we propose a deep model called a sparse convolutional denoising autoencoder (SCDA) to impute missing genotypes. We constructed the SCDA model using a convolutional layer that can extract various correlation or linkage patterns in the genotype data and applying a sparse weight matrix resulted from the L1 regularization to handle high dimensional data. We comprehensively evaluated the performance of the SCDA model in different scenarios for genotype imputation on the yeast and human genotype data, respectively. Our results showed that SCDA has strong robustness and significantly outperforms popular reference-free imputation methods. This study thus points to another novel application of deep learning models for missing data imputation in genomic studies. 
    more » « less