skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identification and Characterization of Particulate Contaminants Found at a Data Center Using Airside Economization
Contamination due to the use of airside economizer has become a major issue that cost companies revenue. This issue will continue to rise as server components become smaller, densely packed, and as companies move into more polluted environments. Contaminants with small particles less than 10lm are not noticeable; yet, these particles are most likely to get to areas where they can cause damage. Dust from different sources and suspended in air settles on surfaces of electrical components. The dust mainly contains two components: salts and metallic particles. The salts may be neutral or corrosive and the nature of the salt depends on the deliquescent humidity. For metallic particles, surveys are performed in various data centers in order to determine the limits in terms of weight per unit area and particle size distribution. It is necessary to first identify those contaminants that directly affect the information technology (IT) equipment in the datacenter. In this research, a real-world data center utilizing airside economization in an ANSI/ISA classified G2 environment was chosen for the study. Servers were removed and qualitative study of cumulative corrosion damage was carried out. The particulate contaminants were collected from different locations of a server and material characterization was performed using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and Fourier transform infrared spectroscopy (FTIR). The analysis from these results helps to explain the impact of the contaminants on IT equipment reliability.  more » « less
Award ID(s):
1738811
PAR ID:
10101125
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of electronic packaging
Volume:
141
Issue:
3
ISSN:
1043-7398
Page Range / eLocation ID:
031003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Contamination due to the use of airside economizer has become a major issue that cost companies revenue. This issue will continue to rise as server components become smaller, densely packed, and as companies move into more polluted environments. Contaminants with small particles less than 10 μm are not noticeable; yet, these particles are most likely to get to areas where they can cause damage. Dust from different sources and suspended in air settles on surfaces of electrical components. The dust mainly contains two components: salts and metallic particles. The salts may be neutral or corrosive and the nature of the salt depends on the deliquescent humidity. For metallic particles, surveys are performed in various data centers in order to determine the limits in terms of weight per unit area and particle size distribution. It is necessary to first identify those contaminants that directly affect the information technology (IT) equipment in the data center. In this research, a real-world data center utilizing airside economization in an ANSI/ISA classified G2 environment was chosen for the study. Servers were removed and qualitative study of cumulative corrosion damage was carried out. The particulate contaminants were collected from different locations of a server and material characterization was performed using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and Fourier transform infrared spectroscopy (FTIR). The analysis from these results helps to explain the impact of the contaminants on IT equipment reliability. 
    more » « less
  2. Abstract Airside economizers lower the operating cost of data centers by reducing or eliminating mechanical cooling. It, however, increases the risk of reliability degradation of information technology (IT) equipment due to contaminants. IT Equipment manufacturers have tested equipment performance and guarantee the reliability of their equipment in environments within ISA 71.04-2013 severity level G1 and the ASHRAE recommended temperature-relative humidity (RH) envelope. IT Equipment manufacturers require data center operators to meet all the specified conditions consistently before fulfilling warranty on equipment failure. To determine the reliability of electronic hardware in higher severity conditions, field data obtained from real data centers are required. In this study, a corrosion classification coupon experiment as per ISA 71.04-2013 was performed to determine the severity level of a research data center (RDC) located in an industrial area of hot and humid Dallas. The temperature-RH excursions were analyzed based on time series and weather data bin analysis using trend data for the duration of operation. After some period, a failure was recorded on two power distribution units (PDUs) located in the hot aisle. The damaged hardware and other hardware were evaluated, and cumulative corrosion damage study was carried out. The hypothetical estimation of the end of life of components is provided to determine free air-cooling hours for the site. There was no failure of even a single server operated with fresh air-cooling shows that using evaporative/free air cooling is not detrimental to IT equipment reliability. This study, however, must be repeated in other geographical locations to determine if the contamination effect is location dependent. 
    more » « less
  3. Abstract Over the last decade, several hyper-scale data center companies such as Google, Facebook, and Microsoft have demonstrated the cost-saving capabilities of airside economization with direct/indirect heat exchangers by moving to chiller-less air-cooled data centers. Under pressure from data center owners, information technology equipment OEMs like Dell and IBM are developing information technology equipment that can withstand peak excursion temperature ratings of up to 45 °C, clearly outside the recommended envelope, and into ASHRAEs A4 allowable envelope. As popular and widespread as these cooling technologies are becoming, airside economization comes with its challenges. There is a risk of premature hardware failures or reliability degradation posed by uncontrolled fine particulate and gaseous contaminants in presence of temperature and humidity transients. This paper presents an in-depth review of the particulate and gaseous contamination-related challenges faced by the modern-day data center facilities that use airside economization. This review summarizes specific experimental and computational studies to characterize the airborne contaminants and associated failure modes and mechanisms. In addition, standard lab-based and in-situ test methods for measuring the corrosive effects of the particles and the corrosive gases, as the means of testing the robustness of the equipment against these contaminants, under different temperature and relative humidity conditions are also reviewed. It also outlines the cost-sensitive mitigation techniques like improved filtration strategies and methods that can be utilized for efficient implementation of airside economization. 
    more » « less
  4. null (Ed.)
    Abstract Modern-day data center administrators are finding it increasingly difficult to lower the costs incurred in mechanical cooling of their IT equipment. This is especially true for high-performance computing facilities like Artificial Intelligence, Bitcoin Mining, and Deep Learning, etc. Airside Economization or free air cooling has been out there as a technology for a long time now to reduce the mechanical cooling costs. In free air cooling, under favorable ambient conditions of temperature and humidity, outside air can be used for cooling the IT equipment. In doing so, the IT equipment is exposed to sub-micron particulate/gaseous contaminants that might enter the data center facility with the cooling airflow. The present investigation uses a computational approach to model the airflow paths of particulate contaminants entering inside the IT equipment using a commercially available CFD code. A Discrete Phase Particle modeling approach is chosen to calculate trajectories of the dispersed contaminants. Standard RANS approach is used to model the airflow in the airflow and the particles are superimposed on the flow field by the CFD solver using Lagrangian particle tracking. The server geometry was modeled in 2-D with a combination of rectangular and cylindrical obstructions. This was done to comprehend the effect of change in the obstruction type and aspect ratio on particle distribution. Identifying such discrete areas of contaminant proliferation based on concentration fields due to changing geometries will help with the mitigation of particulate contamination related failures in data centers. 
    more » « less
  5. null (Ed.)
    Abstract A remarkable amount of energy in data centers is consumed in eliminating the heat generated by the information technology (IT) equipment to maintain and ensure safe operating conditions and optimum performance. The installation of airside economizers (ASEs), while very energy efficient, bears the risk of particulate contamination in data centers, hence, deteriorating the reliability of IT equipment. When relative humidity (RH) in data centers exceeds the deliquescent relative humidity (DRH) of salts or accumulated particulate matter, it absorbs moisture, becomes wet, and subsequently leads to electrical short-circuiting because of degraded surface insulation resistance (SIR) between the closely spaced features on printed circuit boards (PCBs). Another concern with this type of failure is the absence of evidence that hinders the process of evaluation and rectification. Therefore, it is imperative to develop a practical test method to determine the DRH value of the accumulated particulate matter found on PCBs. This research is a first attempt to develop an experimental technique to measure the DRH of dust particles by logging the leakage current versus RH% for the particulate matter dispensed on an interdigitated comb coupon. To validate this methodology, the DRH of pure salts like MgCl2, NH4NO3, and NaCl is determined, and their results are then compared with their published values. This methodology was therefore implemented to help lay a modus operandi of establishing the limiting value or an effective relative humidity envelope to be maintained at a real-world data center facility situated in Dallas industrial area for its continuous and reliable operation. 
    more » « less