skip to main content


Title: Simulating 3-D Stellar Hydrodynamics using PPM and PPB Multifluid Gas Dynamics on CPU and CPU+GPU Nodes
The special computational challenges of simulating 3-D hydrodynamics in deep stellar interiors are discussed, and numerical algorithmic responses described. Results of recent simulations carried out at scale on the NSF's Blue Waters machine at the University of Illinois are presented, with a special focus on the computational challenges they address. Prospects for future work using GPU-accelerated nodes such as those on the DoE's new Summit machine at Oak Ridge National Laboratory are described, with a focus on numerical algorithmic accommodations that we believe will be necessary.  more » « less
Award ID(s):
1814181 1413548 1713200
NSF-PAR ID:
10101327
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of physics. Conference series
Volume:
1225
ISSN:
1742-6596
Page Range / eLocation ID:
012020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In today’s increasingly connected world, graph mining plays a piv- otal role in many real-world application domains, including social network analysis, recommendations, marketing and financial secu- rity. Tremendous efforts have been made to develop a wide range of computational models. However, recent studies have revealed that many widely-applied graph mining models could suffer from potential discrimination. Fairness on graph mining aims to develop strategies in order to mitigate bias introduced/amplified during the mining process. The unique challenges of enforcing fairness on graph mining include (1) theoretical challenge on non-IID nature of graph data, which may invalidate the basic assumption behind many existing studies in fair machine learning, and (2) algorith- mic challenge on the dilemma of balancing model accuracy and fairness. This tutorial aims to (1) present a comprehensive review of state-of-the-art techniques in fairness on graph mining and (2) identify the open challenges and future trends. In particular, we start with reviewing the background, problem definitions, unique challenges and related problems; then we will focus on an in-depth overview of (1) recent techniques in enforcing group fairness, indi- vidual fairness and other fairness notions in the context of graph mining, and (2) future directions in studying algorithmic fairness on graphs. We believe this tutorial could be attractive to researchers and practitioners in areas including data mining, artificial intel- ligence, social science and beneficial to a plethora of real-world application domains. 
    more » « less
  2. null (Ed.)
    The connectivity of networks has been widely studied in many high-impact applications, ranging from immunization, critical infrastructure analysis, social network mining, to bioinformatic system studies. Regardless of the end application domains, connectivity minimization has always been a fundamental task to effectively control the functioning of the underlying system. The combinatorial nature of the connectivity minimization problem imposes an exponential computational complexity to find the optimal solution, which is intractable in large systems. To tackle the computational barrier, greedy algorithm is extensively used to ensure a near-optimal solution by exploiting the diminishing returns property of the problem. Despite the empirical success, the theoretical and algorithmic challenges of the problems still remain wide open. On the theoretical side, the intrinsic hardness and the approximability of the general connectivity minimization problem are still unknown except for a few special cases. On the algorithmic side, existing algorithms are hard to balance between the optimization quality and computational efficiency. In this article, we address the two challenges by (1) proving that the general connectivity minimization problem is NP-hard and is the best approximation ratio for any polynomial algorithms, and (2) proposing the algorithm CONTAIN and its variant CONTAIN + that can well balance optimization effectiveness and computational efficiency for eigen-function based connectivity minimization problems in large networks. 
    more » « less
  3. Catalyzed by enormous success in the industrial sector, many research programs have been exploring data-driven, machine learning approaches. Performance can be poor when the model is extrapolated to new regions of chemical space, e.g., new bonding types, new many-body interactions. Another important limitation is the spatial locality assumption in model architecture, and this limitation cannot be overcome with larger or more diverse datasets. The outlined challenges are primarily associated with the lack of electronic structure information in surrogate models such as interatomic potentials. Given the fast development of machine learning and computational chemistry methods, we expect some limitations of surrogate models to be addressed in the near future; nevertheless spatial locality assumption will likely remain a limiting factor for their transferability. Here, we suggest focusing on an equally important effort—design of physics-informed models that leverage the domain knowledge and employ machine learning only as a corrective tool. In the context of material science, we will focus on semi-empirical quantum mechanics, using machine learning to predict corrections to the reduced-order Hamiltonian model parameters. The resulting models are broadly applicable, retain the speed of semiempirical chemistry, and frequently achieve accuracy on par with much more expensive ab initio calculations. These early results indicate that future work, in which machine learning and quantum chemistry methods are developed jointly, may provide the best of all worlds for chemistry applications that demand both high accuracy and high numerical efficiency.

     
    more » « less
  4. Network connectivity optimization, which aims to manipulate network connectivity by changing its underlying topology, is a fundamental task behind a wealth of high-impact data mining applications, ranging from immunization, critical infrastructure construction, social collaboration mining, bioinformatics analysis, to intelligent transportation system design. To tackle its exponential computation complexity, greedy algorithms have been extensively used for network connectivity optimization by exploiting its diminishing returns property. Despite the empirical success, two key challenges largely remain open. First, on the theoretic side, the hardness, as well as the approximability of the general network connectivity optimization problem are still nascent except for a few special instances. Second, on the algorithmic side, current algorithms are often hard to balance between the optimization quality and the computational efficiency. In this paper, we systematically address these two challenges for the network connectivity optimization problem. First, we reveal some fundamental limits by proving that, for a wide range of network connectivity optimization problems, (1) they are NP-hard and (2) (1-1/e) is the optimal approximation ratio for any polynomial algorithms. Second, we propose an effective, scalable and general algorithm (CONTAIN) to carefully balance the optimization quality and the computational efficiency. 
    more » « less
  5. Soft materials are usually defined as materials made of mesoscopic entities, often self-organised, sensitive to thermal fluctuations and to weak perturbations. Archetypal examples are colloids, polymers, amphiphiles, liquid crystals, foams. The importance of soft materials in everyday commodity products, as well as in technological applications, is enormous, and controlling or improving their properties is the focus of many efforts. From a fundamental perspective, the possibility of manipulating soft material properties, by tuning interactions between constituents and by applying external perturbations, gives rise to an almost unlimited variety in physical properties. Together with the relative ease to observe and characterise them, this renders soft matter systems powerful model systems to investigate statistical physics phenomena, many of them relevant as well to hard condensed matter systems. Understanding the emerging properties from mesoscale constituents still poses enormous challenges, which have stimulated a wealth of new experimental approaches, including the synthesis of new systems with, e.g. tailored self-assembling properties, or novel experimental techniques in imaging, scattering or rheology. Theoretical and numerical methods, and coarse-grained models, have become central to predict physical properties of soft materials, while computational approaches that also use machine learning tools are playing a progressively major role in many investigations. This Roadmap intends to give a broad overview of recent and possible future activities in the field of soft materials, with experts covering various developments and challenges in material synthesis and characterisation, instrumental, simulation and theoretical methods as well as general concepts. 
    more » « less