skip to main content

Title: How Augmented Reality Affects Collaborative Learning of Physics: a Qualitative Analysis
Augmented reality (AR) is a powerful visualization tool to support learning of scientific concepts across learners of various ages. AR can make information otherwise invisible visible in the physical world in real-time. In this study, we are looking at a subset of data from a larger study (N=120), in which participant pairs interacted with an augmented sound producing speaker. We explored the learning behaviors in eight pairs of learners (N=16) who participated in an unstructured physics activity under two conditions: with or without AR. Comparing behaviors between the two experimental conditions, we found that AR affected learning in four different ways: participants in the AR condition (1) learned more about visual concepts (ex: magnetic field structures) but learned less about nonvisual content (ex: relationship between electricity and physical movement); (2) stopped exploring the system faster than NonAR participants; (3) used less aids in exploration and teaching; and (4) spent less time in teaching their collaborators. We discuss implications of those results for designing collaborative learning activities with augmented reality.
Authors:
; ;
Award ID(s):
1748093
Publication Date:
NSF-PAR ID:
10101504
Journal Name:
Computer-supported collaborative learning
ISSN:
1573-4552
Sponsoring Org:
National Science Foundation
More Like this
  1. Emerging technologies such as Augmented Reality (AR), have the potential to radically transform education by making challenging concepts visible and accessible to novices. In this project, we have designed a Hololens-based system in which collaborators are exposed to an unstructured learning activity in which they learned about the invisible physics involved in audio speakers. They learned topics ranging from spatial knowledge, such as shape of magnetic fields, to abstract conceptual knowledge, such as relationships between electricity and magnetism. We compared participants' learning, attitudes and collaboration with a tangible interface through multiple experimental conditions containing varying layers of AR information. Wemore »found that educational AR representations were beneficial for learning specific knowledge and increasing participants' self-efficacy (i.e., their ability to learn concepts in physics). However, we also found that participants in conditions that did not contain AR educational content, learned some concepts better than other groups and became more curious about physics. We discuss learning and collaboration differences, as well as benefits and detriments of implementing augmented reality for unstructured learning activities.« less
  2. Learning analytics, referring to the measurement, collection, analysis, and reporting of data about learners and their contexts in order to optimize learning and the environments in which it occurs, is proving to be a powerful approach for understanding and improving science learning. However, few studies focused on leveraging learning analytics to assess hands-on laboratory skills in K-12 science classrooms. This study demonstrated the feasibility of gauging laboratory skills based on students’ process data logged by a mobile augmented reality (AR) application for conducting science experiments. Students can use the mobile AR technology to investigate a variety of science phenomena thatmore »involve concepts central to physics understanding. Seventy-two students from a suburban middle school in the Northeastern United States participated in this study. They conducted experiments in pairs. Mining process data using Bayesian networks showed that most students who participated in this study demonstrated some degree of proficiency in laboratory skills. Also, findings indicated a positive correlation between laboratory skills and conceptual learning. The results suggested that learning analytics provides a possible solution to measure hands-on laboratory learning in real-time and at scale.« less
  3. COVID-19 has altered the landscape of teaching and learning. For those in in-service teacher education, workshops have been suspended causing programs to adapt their professional development to a virtual space to avoid indefinite postponement or cancellation. This paradigm shift in the way we conduct learning experiences creates several logistical and pedagogical challenges but also presents an important opportunity to conduct research about how learning happens in these new environments. This paper describes the approach we took to conduct research in a series of virtual workshops aimed at teaching rural elementary teachers about engineering practices and how to teach a unitmore »from an engineering curriculum. Our work explores how engineering concepts and practices are socially constructed through interactions with teachers, students, and artifacts. This approach, called interactional ethnography has been used by the authors and others to learn about engineering teaching and learning in precollege classrooms. The approach relies on collecting data during instruction, such as video and audio recordings, interviews, and artifacts such as journal entries and photos of physical designs. Findings are triangulated by analyzing these data sources. This methodology was going to be applied in an in-person engineering education workshop for rural elementary teachers, however the pandemic forced us to conduct the workshops remotely. Teachers, working in pairs, were sent workshop supplies, and worked together during the training series that took place over Zoom over four days for four hours each session. The paper describes how we collected video and audio of teachers and the facilitators both in whole group and in breakout rooms. Class materials and submissions of photos and evaluations were managed using Google Classroom. Teachers took photos of their work and scanned written materials and submitted them all by email. Slide decks were shared by the users and their group responses were collected in real time. Workshop evaluations were collected after each meeting using Google Forms. Evaluation data suggest that the teachers were engaged by the experience, learned significantly about engineering concepts and the knowledge-producing practices of engineers, and feel confident about applying engineering activities in their classrooms. This methodology should be of interest to the membership for three distinct reasons. First, remote instruction is a reality in the near-term but will likely persist in some form. Although many of us prefer to teach in person, remote learning allows us to reach many more participants, including those living in remote and rural areas who cannot easily attend in-person sessions with engineering educators, so it benefits the field to learn how to teach effectively in this way. Second, it describes an emerging approach to engineering education research. Interactional ethnography has been applied in precollege classrooms, but this paper demonstrates how it can also be used in teacher professional development contexts. Third, based on our application of interactional ethnography to an education setting, readers will learn specifically about how to use online collaborative software and how to collect and organize data sources for research purposes.« less
  4. Augmented reality (AR) applications are growing in popularity in educational settings. While the effects of AR experiences on learning have been widely studied, there is relatively less research on understanding the impact of AR on the dynamics of co-located collaborative learning, specifically in the context of novices programming robots. Educational robotics are a powerful learning context because they engage students with problem solving, critical thinking, STEM (Science, Technology, Engineering, Mathematics) concepts, and collaboration skills. However, such collaborations can suffer due to students having unequal access to resources or dominant peers. In this research we investigate how augmented reality impacts learningmore »and collaboration while peers engage in robot programming activities. We use a mixed methods approach to measure how participants are learning, manipulating resources, and engaging in problem solving activities with peers. We investigate how these behaviors are impacted by the presence of augmented reality visualizations, and by participants? proximity to resources. We find that augmented reality improved overall group learning and collaboration. Detailed analysis shows that AR strongly helps one participant more than the other, by improving their ability to learn and contribute while remaining engaged with the robot. Furthermore, augmented reality helps both participants maintain a common ground and balance contributions during problem solving activities. We discuss the implications of these results for designing AR and non-AR collaborative interfaces.« less
  5. Augmented reality (AR) has the potential to fundamentally transform science education by making learning of abstract science ideas tangible and engaging. However, little is known about how students interacted with AR technologies and how these interactions may affect learning performance in science laboratories. This study examined high school students’ navigation patterns and science learning with a mobile AR technology, developed by the research team, in laboratory settings. The AR technology allows students to conduct hands-on laboratory experiments and interactively explore various science phenomena covering biology, chemistry, and physics concepts. In this study, seventy ninth-grade students carried out science laboratory experimentsmore »in pairs to learn thermodynamics. Our cluster analysis identified two groups of students, which differed significantly in navigation length and breadth. The two groups demonstrated unique navigation patterns that revealed students’ various ways of observing, describing, exploring, and evaluating science phenomena. These navigation patterns were associated with learning performance as measured by scores on lab reports. The results suggested the need for providing access to multiple representations and different types of interactions with these representations to support effective science learning as well as designing representations and connections between representations to cultivate scientific reasoning skills and nuanced understanding of scientific processes.« less