skip to main content


Title: What Can We Learn from Augmented Reality (AR)?
Emerging technologies such as Augmented Reality (AR), have the potential to radically transform education by making challenging concepts visible and accessible to novices. In this project, we have designed a Hololens-based system in which collaborators are exposed to an unstructured learning activity in which they learned about the invisible physics involved in audio speakers. They learned topics ranging from spatial knowledge, such as shape of magnetic fields, to abstract conceptual knowledge, such as relationships between electricity and magnetism. We compared participants' learning, attitudes and collaboration with a tangible interface through multiple experimental conditions containing varying layers of AR information. We found that educational AR representations were beneficial for learning specific knowledge and increasing participants' self-efficacy (i.e., their ability to learn concepts in physics). However, we also found that participants in conditions that did not contain AR educational content, learned some concepts better than other groups and became more curious about physics. We discuss learning and collaboration differences, as well as benefits and detriments of implementing augmented reality for unstructured learning activities.  more » « less
Award ID(s):
1748093
NSF-PAR ID:
10101502
Author(s) / Creator(s):
;
Date Published:
Journal Name:
What Can We Learn from Augmented Reality (AR)?
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Augmented reality (AR) is a powerful visualization tool to support learning of scientific concepts across learners of various ages. AR can make information otherwise invisible visible in the physical world in real-time. In this study, we are looking at a subset of data from a larger study (N=120), in which participant pairs interacted with an augmented sound producing speaker. We explored the learning behaviors in eight pairs of learners (N=16) who participated in an unstructured physics activity under two conditions: with or without AR. Comparing behaviors between the two experimental conditions, we found that AR affected learning in four different ways: participants in the AR condition (1) learned more about visual concepts (ex: magnetic field structures) but learned less about nonvisual content (ex: relationship between electricity and physical movement); (2) stopped exploring the system faster than NonAR participants; (3) used less aids in exploration and teaching; and (4) spent less time in teaching their collaborators. We discuss implications of those results for designing collaborative learning activities with augmented reality. 
    more » « less
  2. null (Ed.)
    Augmented reality (AR) applications are growing in popularity in educational settings. While the effects of AR experiences on learning have been widely studied, there is relatively less research on understanding the impact of AR on the dynamics of co-located collaborative learning, specifically in the context of novices programming robots. Educational robotics are a powerful learning context because they engage students with problem solving, critical thinking, STEM (Science, Technology, Engineering, Mathematics) concepts, and collaboration skills. However, such collaborations can suffer due to students having unequal access to resources or dominant peers. In this research we investigate how augmented reality impacts learning and collaboration while peers engage in robot programming activities. We use a mixed methods approach to measure how participants are learning, manipulating resources, and engaging in problem solving activities with peers. We investigate how these behaviors are impacted by the presence of augmented reality visualizations, and by participants? proximity to resources. We find that augmented reality improved overall group learning and collaboration. Detailed analysis shows that AR strongly helps one participant more than the other, by improving their ability to learn and contribute while remaining engaged with the robot. Furthermore, augmented reality helps both participants maintain a common ground and balance contributions during problem solving activities. We discuss the implications of these results for designing AR and non-AR collaborative interfaces. 
    more » « less
  3. The educational applications of extended reality (XR) modalities, including virtual reality (VR), augmented reality (AR), and mixed reality (MR), have increased significantly over the last ten years. Many educators within the Architecture, Engineering, and Construction (AEC) related degree programs see student benefits that could be derived from bringing these modalities into classrooms, which include but are not limited to: a better understanding of each of the subdisciplines and the coordination necessary between them, visualizing oneself as a professional in AEC, and visualization of difficult concepts to increase engagement, self-efficacy, and learning. These benefits, in turn, help recruitment and retention efforts for these degree programs. However, given the number of technologies available and the fact that they quickly become outdated, there is confusion about the definitions of the different XR modalities and their unique capabilities. This lack of knowledge, combined with limited faculty time and lack of financial resources, can make it overwhelming for educators to choose the right XR modality to accomplish particular educational objectives. There is a lack of guidance in the literature for AEC educators to consider various factors that affect the success of an XR intervention. Grounded in a comprehensive literature review and the educational framework of the Model of Domain Learning, this paper proposes a decision-making framework to help AEC educators select the appropriate technologies, platforms, and devices to use for various educational outcomes (e.g., learning, interest generation, engagement) considering factors such as budget, scalability, space/equipment needs, and the potential benefits and limitations of each XR modality. To this end, a comprehensive review of the literature was performed to decipher various definitions of XR modalities and how they have been previously utilized in AEC Education. The framework was then successfully validated at a summer camp in the School of Building Construction at Georgia Institute of Technology, highlighting the importance of using appropriate XR technologies depending on the educational context.

     
    more » « less
  4. Augmented reality (AR) can be a useful educational tool which allows the representation of concepts that are otherwise invisible and difficult to visualize. We designed an augmented reality tool (the Holoboard) for learning about circuits and voltage, and deployed it in a summer school course for students to use. The students were hesitant to use the tool for several reasons, but those who did had a positive experience and found the tool to be helpful. Overall, tools were used by students who had an independent approach to problem-solving, and students preferred tools that were easily accessible and did not disrupt their workflow. We conclude with suggestions to improve the Holoboard to tailor it to the needs of students. 
    more » « less
  5. This work in progress paper presents an assessment framework for an authentic learning activity in augmented reality (AR). Constant changes in technical and societal needs require educational programs to constantly rethink the status quo and explore ways to align future professionals’ formal education with emerging workforce demands. Such is critical for all professions — including those in the architecture, engineering, and construction (AEC) industry. While many may agree on the need to do this, what is less clear is the scholarly approach required for undertaking such an endeavor. Insights from studies associated with the Preparation for the Professions Program led by the Carnegie Foundation for the Advancement of Teaching offer a framework used for exploring professional preparation across professions is commonly referred to as the Three Apprenticeships—namely, Apprenticeships of the Head, the Hand, and the Heart. Within engineering-related fields, academic preparation for the profession primarily focuses on technical knowledge; but there is a need for more holistic, integrated learning experiences that involve different kinds of knowledge (Head), skills (Hand), and professional judgment (Heart). This study leverages the Three Apprenticeship framework to assess an integrated learning AEC experience in augmented reality (AR) by using real-time data collected from participants. Using the context of a children’s playground, participants were asked to redesign an existing play structure to better meet the needs of children, parents, and other stakeholders within the community. A five-metric assessment was developed to operationalize the head, hand, and heart constructs in this context and measure participants’ ability to think holistically in an authentic learning experience. These five assessment metrics included cost, time, safety, sustainability, and fun. This paper explores the development of this assessment and shares preliminary findings from the study. 
    more » « less