null
(Ed.)
Abstract Optimal transport maps and plans between two absolutely continuous measures $$\mu$$ and $$\nu$$ can be approximated by solving semidiscrete or fully discrete optimal transport problems. These two problems ensue from approximating $$\mu$$ or both $$\mu$$ and $$\nu$$ by Dirac measures. Extending an idea from Gigli (2011, On Hölder continuity-in-time of the optimal transport map towards measures along a curve. Proc. Edinb. Math. Soc. (2), 54, 401–409), we characterize how transport plans change under the perturbation of both $$\mu$$ and $$\nu$$. We apply this insight to prove error estimates for semidiscrete and fully discrete algorithms in terms of errors solely arising from approximating measures. We obtain weighted $L^2$ error estimates for both types of algorithms with a convergence rate $$O(h^{1/2})$$. This coincides with the rate in Theorem 5.4 in Berman (2018, Convergence rates for discretized Monge–Ampère equations and quantitative stability of optimal transport. Preprint available at arXiv:1803.00785) for semidiscrete methods, but the error notion is different.
more »
« less