skip to main content


Title: Quantitative stability and error estimates for optimal transport plans
Abstract Optimal transport maps and plans between two absolutely continuous measures $\mu$ and $\nu$ can be approximated by solving semidiscrete or fully discrete optimal transport problems. These two problems ensue from approximating $\mu$ or both $\mu$ and $\nu$ by Dirac measures. Extending an idea from Gigli (2011, On Hölder continuity-in-time of the optimal transport map towards measures along a curve. Proc. Edinb. Math. Soc. (2), 54, 401–409), we characterize how transport plans change under the perturbation of both $\mu$ and $\nu$. We apply this insight to prove error estimates for semidiscrete and fully discrete algorithms in terms of errors solely arising from approximating measures. We obtain weighted $L^2$ error estimates for both types of algorithms with a convergence rate $O(h^{1/2})$. This coincides with the rate in Theorem 5.4 in Berman (2018, Convergence rates for discretized Monge–Ampère equations and quantitative stability of optimal transport. Preprint available at arXiv:1803.00785) for semidiscrete methods, but the error notion is different.  more » « less
Award ID(s):
1908267
NSF-PAR ID:
10299281
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IMA Journal of Numerical Analysis
Volume:
41
Issue:
3
ISSN:
0272-4979
Page Range / eLocation ID:
1941 to 1965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we analyze a homogeneous parabolic problem with initial data in the space of regular Borel measures. The problem is discretized in time with a discontinuous Galerkin scheme of arbitrary degree and in space with continuous finite elements of orders one or two. We show parabolic smoothing results for the continuous, semidiscrete and fully discrete problems. Our main results are interiorLerror estimates for the evaluation at the endtime, in cases where the initial data is supported in a subdomain. In order to obtain these, we additionally show interiorLerror estimates forL2initial data and quadratic finite elements, which extends the corresponding result previously established by the authors for linear finite elements.

     
    more » « less
  2. Braverman, Mark (Ed.)
    We present a framework for speeding up the time it takes to sample from discrete distributions $\mu$ defined over subsets of size $k$ of a ground set of $n$ elements, in the regime where $k$ is much smaller than $n$. We show that if one has access to estimates of marginals $\mathbb{P}_{S\sim \mu}[i\in S]$, then the task of sampling from $\mu$ can be reduced to sampling from related distributions $\nu$ supported on size $k$ subsets of a ground set of only $n^{1-\alpha}\cdot \operatorname{poly}(k)$ elements. Here, $1/\alpha\in [1, k]$ is the parameter of entropic independence for $\mu$. Further, our algorithm only requires sparsified distributions $\nu$ that are obtained by applying a sparse (mostly $0$) external field to $\mu$, an operation that for many distributions $\mu$ of interest, retains algorithmic tractability of sampling from $\nu$. This phenomenon, which we dub domain sparsification, allows us to pay a one-time cost of estimating the marginals of $\mu$, and in return reduce the amortized cost needed to produce many samples from the distribution $\mu$, as is often needed in upstream tasks such as counting and inference. For a wide range of distributions where $\alpha=\Omega(1)$, our result reduces the domain size, and as a corollary, the cost-per-sample, by a $\operatorname{poly}(n)$ factor. Examples include monomers in a monomer-dimer system, non-symmetric determinantal point processes, and partition-constrained Strongly Rayleigh measures. Our work significantly extends the reach of prior work of Anari and Derezi\'nski who obtained domain sparsification for distributions with a log-concave generating polynomial (corresponding to $\alpha=1$). As a corollary of our new analysis techniques, we also obtain a less stringent requirement on the accuracy of marginal estimates even for the case of log-concave polynomials; roughly speaking, we show that constant-factor approximation is enough for domain sparsification, improving over $O(1/k)$ relative error established in prior work. 
    more » « less
  3. Abstract

    An adaptive, adversarial methodology is developed for the optimal transport problem between two distributions $\mu $ and $\nu $, known only through a finite set of independent samples $(x_i)_{i=1..n}$ and $(y_j)_{j=1..m}$. The methodology automatically creates features that adapt to the data, thus avoiding reliance on a priori knowledge of the distributions underlying the data. Specifically, instead of a discrete point-by-point assignment, the new procedure seeks an optimal map $T(x)$ defined for all $x$, minimizing the Kullback–Leibler divergence between $(T(x_i))$ and the target $(y_j)$. The relative entropy is given a sample-based, variational characterization, thereby creating an adversarial setting: as one player seeks to push forward one distribution to the other, the second player develops features that focus on those areas where the two distributions fail to match. The procedure solves local problems that seek the optimal transfer between consecutive, intermediate distributions between $\mu $ and $\nu $. As a result, maps of arbitrary complexity can be built by composing the simple maps used for each local problem. Displaced interpolation is used to guarantee global from local optimality. The procedure is illustrated through synthetic examples in one and two dimensions.

     
    more » « less
  4. The analyses of interior penalty discontinuous Galerkin methods of any order k for solving elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove convergence of the method by deriving a priori error estimates in the L 2 norm and in weighted energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any approximation order. Further, almost optimal local error estimates in the L 2 norm are obtained for the case of piecewise linear approximations whereas suboptimal error bounds in the L 2 norm are shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is established by proving error estimates in L 2 in time and in space. Numerical results for the elliptic problem are added to support the theoretical results. 
    more » « less
  5. An adaptive mesh refinement method for solving optimal control problems is developed. The method employs orthogonal collocation at Legendre–Gauss–Radau points, and adjusts both the mesh size and the degree of the approximating polynomials in the refinement process. A previously derived convergence rate is used to guide the refinement process. The method brackets discontinuities and improves solution accuracy by checking for large increases in higher-order derivatives of the state. In regions between discontinuities, where the solution is smooth, the error in the approximation is reduced by increasing the degree of the approximating polynomial. On mesh intervals where the error tolerance has been met, mesh density may be reduced either by merging adjacent mesh intervals or lowering the degree of the approximating polynomial. Finally, the method is demonstrated on two examples from the open literature and its performance is compared against a previously developed adaptive method. 
    more » « less