skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rethinking Resilience Analytics
Abstract The concept of “resilience analytics” has recently been proposed as a means to leverage the promise of big data to improve the resilience of interdependent critical infrastructure systems and the communities supported by them. Given recent advances in machine learning and other data‐driven analytic techniques, as well as the prevalence of high‐profile natural and man‐made disasters, the temptation to pursue resilience analytics without question is almost overwhelming. Indeed, we find big data analytics capable to support resilience to rare, situational surprises captured in analytic models. Nonetheless, this article examines the efficacy of resilience analytics by answering a single motivating question: Can big data analytics help cyber–physical–social (CPS) systems adapt to surprise? This article explains the limitations of resilience analytics when critical infrastructure systems are challenged by fundamental surprises never conceived during model development. In these cases, adoption of resilience analytics may prove either useless for decision support or harmful by increasing dangers during unprecedented events. We demonstrate that these dangers are not limited to a single CPS context by highlighting the limits of analytic models during hurricanes, dam failures, blackouts, and stock market crashes. We conclude that resilience analytics alone are not able to adapt to the very events that motivate their use and may, ironically, make CPS systems more vulnerable. We present avenues for future research to address this deficiency, with emphasis on improvisation to adapt CPS systems to fundamental surprise.  more » « less
Award ID(s):
1760739
PAR ID:
10102174
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Risk Analysis
Volume:
39
Issue:
9
ISSN:
0272-4332
Page Range / eLocation ID:
p. 1870-1884
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The American Society of Civil Engineers (ASCE) Report Card for America’s Infrastructure gave bridges a C+ (mediocre) grade in 2017. Approximately, 1 in 5 rural bridges are in critical condition, which presents serious challenges to public safety and economic growth. Fortunately, during a series of workshops on this topic organized by the authors, it has become clear that Big Data could provide a timely solution to these critical problems. In this work in progress paper, we describe a conceptual framework for developing SMart big data pipelines for Aging Rural bridge Transportation Infrastructure (SMARTI). Our framework and associated research questions are organized around four ingredients: • Next-Generation Health Monitoring: Sensors; Unmanned Aerial Vehicle/System (UAV/UAS); wireless networks • Data Management: Data security and quality; intellectual property; standards and shared best practices; curation • Decision Support Systems: Analysis and modeling; data analytics; decision making; visualization, • Socio-Technological Impact: Policy; societal, economic and environmental impact; disaster and crisis management. 
    more » « less
  2. null (Ed.)
    The electrical power system is the backbone of our nations critical infrastructure. It has been designed to withstand single component failures based on a set of reliability metrics which have proven acceptable during normal operating conditions. However, in recent years there has been an increasing frequency of extreme weather events. Many have resulted in widespread long-term power outages, proving reliability metrics do not provide adequate energy security. As a result, researchers have focused their efforts resilience metrics to ensure efficient operation of power systems during extreme events. A resilient system has the ability to resist, adapt, and recover from disruptions. Therefore, resilience has demonstrated itself as a promising concept for currently faced challenges in power distribution systems. In this work, we propose an operational resilience metric for modern power distribution systems. The metric is based on the aggregation of system assets adaptive capacity in real and reactive power. This metric gives information to the magnitude and duration of a disturbance the system can withstand. We demonstrate resilience metric in a case study under normal operation and during a power contingency on a microgrid. In the future, this information can be used by operators to make more informed decisions based on system resilience in an effort to prevent power outages. 
    more » « less
  3. As data analytics applications become increasingly important in a wide range of domains, the ability to develop large-scale and sustainable platforms and software infrastructure to support these applications has significant potential to drive research and innovation in both science and business domains. This paper characterizes performance and power-related behavior trends and tradeoffs of the two predominant frameworks for Big Data analytics (i.e., Apache Hadoop and Spark) for a range of representative applications. It also evaluates system design knobs, such as storage and network technologies and power capping techniques. Experimental results from empirical executions provide meaningful data points for exploring the potential of software-defined infrastructure for Big Data processing systems through simulation. The results provide better understanding of the design space to build multi-criteria application-centric models as well as show significant advantages of software-defined infrastructure in terms of execution time, energy and cost. It motivates further research focused on in-memory processing formulations regarding systems with deeper memory hierarchies and software-defined infrastructure. 
    more » « less
  4. As critical infrastructure systems consider whether and how to adapt and build resilience to climate variability and change, more research is needed to holistically explore the dynamics of resilience-building changes over time. We begin to fill this gap with a case study of the Rhode Island public wastewater sector. The Rhode Island Department of Environmental Management has invested significant funding, technical assistance, capacity building, and regulatory pressure to help publicly owned wastewater systems build resilience to climate challenges since 2010. To trace, assess, and understand the dynamics of resilience-building efforts over time, we interviewed wastewater utility and municipal personnel using event history calendars (EHCs). EHCs helped respondents recall details of relevant events, including potentially disruptive storms/incidents, and how they responded, including large- and small-scale adaptations, during the study period (2010–2023). We used EHCs to trace resilience and transformation capacities over time, and to analyze and predict movement toward transformational adaptation. We found that factors that best enable movement from incremental to transformational changes include unlocking capacity, or the organizational cultural value of in-depth learning/change, and a suite of contextual supports – new information, forward-looking collaborators, and stable funding sources – which require buy-in across levels of governance. We also found that, with organizational culture considered, experiencing disruption is not predictive of pursuing transformative adaptation. This suggests decision-making strategies for states, local jurisdictions, and utility managers to support climate adaptation and resilience in critical infrastructure, such as eliminating path-dependencies and silos, lowering thresholds for action, and leveraging networks to support moving toward transformation. 
    more » « less
  5. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    Although the fields of educational data mining and learning analytics have grown in terms of the analytic sophistication and breadth of applications, the impact on theory-building has been limited. To move these fields forward, studies should not only be driven by learning theory but also the analytics should be used to inform theory. In this paper, we present an approach for integrating educational data mining models with design-based research approaches to promote theory-building that is informed by data-based models. This approach aligns theory, design of the learning environment, data collection, and analytic methods through iterations that focus on the refinement and improvement of all these components. We provide an example from our own work which is driven by a critical constructionist learning framework, the design and development of a digital learning environment for elementary-school aged children to learn about artificial intelligence within sociopolitical contexts, and the use of epistemic network analysis as a tool for modeling learning. We conclude with how this approach can be reciprocally beneficial in that educational data miners can use their models to inform theory and learning scientists can augment their theory-building practices through big data models. 
    more » « less