The North American Electric Reliability Corporation (NERC) tracks the restoration of the North American transmission system after events which test the grid resilience and reliability. Quantifying and analyzing these historical events is a foundation for studying and maintaining resilience. After showing that the largest recent events are dominated by extreme weather events, the paper analyzes these events by extracting the restore process for each event and defining, calculating, and discussing various metrics that quantify the restoration. The metrics include a duration metric of time to substantial restoration. In 2021, Hurricane Ida was the largest resilience event in the North American system. A case study of Hurricane Ida analyzes the generator outages and restoration as well as the transmission system outages and restoration.
more »
« less
An Operational Resilience Metric for Modern Power Distribution Systems
The electrical power system is the backbone of our nations critical infrastructure. It has been designed to withstand single component failures based on a set of reliability metrics which have proven acceptable during normal operating conditions. However, in recent years there has been an increasing frequency of extreme weather events. Many have resulted in widespread long-term power outages, proving reliability metrics do not provide adequate energy security. As a result, researchers have focused their efforts resilience metrics to ensure efficient operation of power systems during extreme events. A resilient system has the ability to resist, adapt, and recover from disruptions. Therefore, resilience has demonstrated itself as a promising concept for currently faced challenges in power distribution systems. In this work, we propose an operational resilience metric for modern power distribution systems. The metric is based on the aggregation of system assets adaptive capacity in real and reactive power. This metric gives information to the magnitude and duration of a disturbance the system can withstand. We demonstrate resilience metric in a case study under normal operation and during a power contingency on a microgrid. In the future, this information can be used by operators to make more informed decisions based on system resilience in an effort to prevent power outages.
more »
« less
- Award ID(s):
- 1846493
- NSF-PAR ID:
- 10222651
- Date Published:
- Journal Name:
- 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)
- Page Range / eLocation ID:
- 334 to 342
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Natural disasters has been causing an increasing amount of economic losses in the past two decades. Natural disasters, such as hurricanes, winter storms, and wildfires, can cause severe damages to power systems, significantly impacting industrial, commercial, and residential activities, leading to not only economic losses but also inconveniences to people’s day-today life. Improving the resilience of power systems can lead to a reduced number of power outages during extreme events and is a critical goal in today’s power system operations. This paper presents a model for decentralized decision-making in power systems based on distributed optimization and implemented it on a modified RTS-96 test system, discusses the convergence of the problem, and compares the impact of decision-making mechanisms on power system resilience. Results show that a decentralized decision-making algorithm can significantly reduce power outages when part of the system is islanded during severe transmission contingencies.more » « less
-
Among current priorities of the power system analysis is the development of metrics and computational tools for the resilience analysis during catastrophic events. New methods and tools are required for such an analysis and they have to be validated prior application to real systems. However, benchmark problems are not readily available due to the analysis novelty. The current paper presents a case based on the IEEE 14-bus system for this purpose. The grid is simplified to a graph with nodes representing generators, loads, and buses. Power inputs are imported from real-time simulations of the IEEE 14-bus system. Outcomes of all possible combinations of failed elements are presented in terms of probabilities for the grid to survive, partially survive, or fail. Only the power grid's ability to withstand adverse events (survivability) is analyzed. The grid's recoverability, the other part of the resilience analysis, is not considered.more » « less
-
Climate change is expected to intensify the effects of extreme weather events on power systems and increase the frequency of severe power outages. The large-scale integration of environment-dependent renewables during energy decarbonization could induce increased uncertainty in the supply–demand balance and climate vulnerability of power grids. This Perspective discusses the superimposed risks of climate change, extreme weather events and renewable energy integration, which collectively affect power system resilience. Insights drawn from large-scale spatiotemporal data on historical US power outages induced by tropical cyclones illustrate the vital role of grid inertia and system flexibility in maintaining the balance between supply and demand, thereby preventing catastrophic cascading failures. Alarmingly, the future projections under diverse emission pathways signal that climate hazards — especially tropical cyclones and heatwaves — are intensifying and can cause even greater impacts on the power grids. High-penetration renewable power systems under climate change may face escalating challenges, including more severe infrastructure damage, lower grid inertia and flexibility, and longer post-event recovery. Towards a net-zero future, this Perspective then explores approaches for harnessing the inherent potential of distributed renewables for climate resilience through forming microgrids, aligned with holistic technical solutions such as grid-forming inverters, distributed energy storage, cross-sector interoperability, distributed optimization and climate–energy integrated modelling.more » « less
-
We automatically extract resilience events and novel outage and restore processes from standard transmission utility detailed outage data. This new processing is applied to the outage data collected in NERC’s Transmission Availability Data System to introduce and analyze statistics that quantify resilience of the transmission system against extreme weather events. These metrics (such as outage rate and duration, number of elements outaged, rated capacity outaged, restore duration, maximum simultaneous outages, and element-days lost) are calculated for all large weather-related events on the North American transmission system from 2015 to 2020 and then by extreme weather type that caused them such as hurricanes, tornadoes, and winter storms. Finally, we study how performance of the system changed with respect to the resilience metrics by season and year.more » « less