skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Meridional Atmospheric Heat Transport Constrained by Energetics and Mediated by Large-Scale Diffusion
Meridional atmospheric heat transport (AHT) has been investigated through three broad perspectives: a dynamic perspective, linking AHT to the poleward flux of moist static energy (MSE) by atmospheric motions; an energetic perspective, linking AHT to energy input to the atmosphere by top-of-atmosphere radiation and surface heat fluxes; and a diffusive perspective, representing AHT in terms downgradient energy transport. It is shown here that the three perspectives provide complementary diagnostics of meridional AHT and its changes under greenhouse gas forcing. When combined, the energetic and diffusive perspectives offer prognostic insights: anomalous AHT is constrained to satisfy the net energetic demands of radiative forcing, radiative feedbacks, and ocean heat uptake; in turn, the meridional pattern of warming must adjust to produce those AHT changes, and does so approximately according to diffusion of anomalous MSE. The relationship between temperature and MSE exerts strong constraints on the warming pattern, favoring polar amplification. These conclusions are supported by use of a diffusive moist energy balance model (EBM) that accurately predicts zonal-mean warming and AHT changes within comprehensive general circulation models (GCMs). A dry diffusive EBM predicts similar AHT changes in order to satisfy the same energetic constraints, but does so through tropically amplified warming—at odds with the GCMs’ polar-amplified warming pattern. The results suggest that polar-amplified warming is a near-inevitable consequence of a moist, diffusive atmosphere’s response to greenhouse gas forcing. In this view, atmospheric circulations must act to satisfy net AHT as constrained by energetics.  more » « less
Award ID(s):
1752796
PAR ID:
10102639
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
32
Issue:
12
ISSN:
0894-8755
Page Range / eLocation ID:
p. 3655-3680
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The midlatitude poleward atmospheric energy transport increases in radiatively forced simulations of warmed climates across a range of models from comprehensive coupled general circulation models (GCMs) to idealized aquaplanet moist GCMs to diffusive moist energy balance models. These increases have been rationalized from two perspectives. The energetic (or radiative) perspective takes the atmospheric energy budget and decomposes energy flux changes (radiative forcing, feedbacks, or surface fluxes) to determine the energy transport changes required by the budget. The diffusive perspective takes the net effect of atmospheric macroturbulence to be a diffusive energy transport down-gradient, so transport changes can arise from changes in mean energy gradients or turbulent diffusivity. Here, we compare these perspectives in idealized moist, gray-radiation GCM simulations over a wide range of climates. The energetic perspective has a dominant role for radiative forcing in this GCM, with cancellation between the temperature feedback components that account for the GCM’s nonmonotonic energy transport changes in response to warming. Comprehensive CMIP5 simulations have similarities in the Northern Hemisphere to the idealized GCM, although a comprehensive GCM over several CO 2 doublings has a distinctly different feedback evolution structure. The diffusive perspective requires a non-constant diffusivity to account for the idealized GCM-simulated changes, with important roles for the eddy velocity, dry static stability, and horizontal energy gradients. Beyond diagnostic analysis, GCM-independent a priori theories for components of the temperature feedback are presented that account for changes without knowledge of a perturbed climate state, suggesting that the energetic perspective is the more parsimonious one. 
    more » « less
  2. Abstract The role of cloud feedbacks in Arctic amplification (AA) of anthropogenic warming remains unclear. Traditional feedback analysis diagnoses the net cloud feedback as strongly positive in the tropics but either weak or negative in the Arctic, suggesting that AA would be amplified if cloud feedbacks were suppressed. However, in cloud-locking experiments using the slab ocean version of the Energy Exascale Earth System Model (E3SM), we find that suppressing cloud feedbacks results in a substantial decrease in AA under greenhouse gas forcing. We show that the increase in AA from cloud feedbacks arises from two main mechanisms: 1) the additional energy contributed by positive cloud feedbacks in the tropics leads to increased poleward moist atmospheric heat transport (AHT) which then amplifies Arctic warming; and 2) the additional Arctic warming is amplified by positive noncloud feedbacks in the region, together making extrapolar cloud feedbacks amplify AA. We also find that cloud changes can modify the strength of noncloud feedback, but that modification has a small effect on Arctic warming. We further examine the role of cloud feedbacks in AA using a moist energy balance model, which demonstrates that interactions of cloud feedbacks with moist AHT and other positive feedbacks dominate the influence of clouds on the pattern of surface warming. However, the contribution of cloud-induced changes in noncloud feedbacks on AA is relatively minor. These results demonstrate that traditional attributions of AA, that are based on local feedback analysis, overlook key interactions between extrapolar cloud changes, poleward AHT, and noncloud feedbacks in the Arctic. 
    more » « less
  3. Abstract The polar regions are predicted to experience the largest relative change in precipitation in response to increased greenhouse-gas concentrations, where a substantial absolute increase in precipitation coincides with small precipitation rates in the present-day climate. The reasons for this amplification, however, are still debated. Here, we use an atmospheric energy budget to decompose regional precipitation change from climate models under greenhouse-gas forcing into contributions from atmospheric radiative feedbacks, dry-static energy flux divergence changes, and surface sensible heat flux changes. The polar-amplified relative precipitation change is shown to be a consequence of the Planck feedback, which, when combined with larger polar warming, favors substantial atmospheric radiative cooling that balances increases in latent heat release from precipitation. Changes in the dry-static energy flux divergence contribute modestly to the polar-amplified pattern. Additional contributions to the polar-amplified response come, in the Arctic, from the cloud feedback and, in the Antarctic, from both the cloud and water vapor feedbacks. The primary contributor to the intermodel spread in the relative precipitation change in the polar region is also the Planck feedback, with the lapse rate feedback and dry-static energy flux divergence changes playing secondary roles. For all regions, there are strong covariances between radiative feedbacks and changes in the dry-static energy flux divergence that impact the intermodel spread. These results imply that constraining regional precipitation change, particularly in the polar regions, will require constraining not only individual feedbacks but also the covariances between radiative feedbacks and atmospheric energy transport. 
    more » « less
  4. Abstract The response of zonal-mean precipitation minus evaporation ( P − E ) to global warming is investigated using a moist energy balance model (MEBM) with a simple Hadley cell parameterization. The MEBM accurately emulates zonal-mean P − E change simulated by a suite of global climate models (GCMs) under greenhouse gas forcing. The MEBM also accounts for most of the intermodel differences in GCM P − E change and better emulates GCM P − E change when compared to the “wet-gets-wetter, dry-gets-drier” thermodynamic mechanism. The intermodel spread in P − E change is attributed to intermodel differences in radiative feedbacks, which account for 60%–70% of the intermodel variance, with smaller contributions from radiative forcing and ocean heat uptake. Isolating the intermodel spread of feedbacks to specific regions shows that tropical feedbacks are the primary source of intermodel spread in zonal-mean P − E change. The ability of the MEBM to emulate GCM P − E change is further investigated using idealized feedback patterns. A less negative and narrowly peaked feedback pattern near the equator results in more atmospheric heating, which strengthens the Hadley cell circulation in the deep tropics through an enhanced poleward heat flux. This pattern also increases gross moist stability, which weakens the subtropical Hadley cell circulation. These two processes in unison increase P − E in the deep tropics, decrease P − E in the subtropics, and narrow the intertropical convergence zone. Additionally, a feedback pattern that produces polar-amplified warming partially reduces the poleward moisture flux by weakening the meridional temperature gradient. It is shown that changes to the Hadley cell circulation and the poleward moisture flux are crucial for understanding the pattern of GCM P − E change under warming. Significance Statement Changes to the hydrological cycle over the twenty-first century are predicted to impact ecosystems and socioeconomic activities throughout the world. While it is broadly expected that dry regions will get drier and wet regions will get wetter, the magnitude and spatial structure of these changes remains uncertain. In this study, we use an idealized climate model, which assumes how energy is transported in the atmosphere, to understand the processes setting the pattern of precipitation and evaporation under global warming. We first use the idealized climate model to explain why comprehensive climate models predict different changes to precipitation and evaporation across a range of latitudes. We show this arises primarily from climate feedbacks, which act to amplify or dampen the amount of warming. Ocean heat uptake and radiative forcing play secondary roles but can account for a significant amount of the uncertainty in regions where ocean circulation influences the rate of warming. We further show that uncertainty in tropical feedbacks (mainly from clouds) affects changes to the hydrological cycle across a range of latitudes. We then show how the pattern of climate feedbacks affects how the patterns of precipitation and evaporation respond to climate change through a set of idealized experiments. These results show how the pattern of climate feedbacks impacts tropical hydrological changes by affecting the strength of the Hadley circulation and polar hydrological changes by affecting the transport of moisture to the high latitudes. 
    more » « less
  5. Abstract The Hadley cell response to globally increasing CO 2 concentrations is spatially complex, with an intensified rising branch and weakened descending branch. To better understand these changes, we examine the sensitivity of the Hadley cell to idealized radiative forcing in different latitude bands. The Hadley cell response is, to first order, governed by the latitudinal structure of the forcing. The strengthening of the upward branch is attributed to tropical forcing, whereas the weakening of the descending branch is attributed to extratropical forcing. These direct radiatively-forced Hadley cell responses are amplified by changes in atmospheric eddy heat transport while being partially offset by changes in gross moist stability and ocean heat uptake. The radiative feedbacks further modulate the Hadley cell response by altering the meridional atmospheric energy gradient. The Hadley cell projections under global warming are thus a result of opposing – and thus compensating – effects from tropical and extratropical radiative forcings. 
    more » « less