Abstract Copper ions in wastewater present substantial environmental hazards, toxic to aquatic species and prone to bioaccumulation. Addressing this, we present a novel cross‐linked polythiourethane (C‐PTU) as a promising chelating adsorbent for the effective removal of copper ions from wastewater. A new monomer, 5‐(2,2,2‐trifluoroacetamide) benzene‐1,3‐bis(carbonyl) isothiocyanate (TFA‐ITC), was synthesized and further condensed with a 1,4‐butane diol to produce a trifluoroacetamide functionalized polythiourethane (TFA‐PTU) and subsequently generating amine functionalized polythiourethane (A‐PTU). The cross‐linking reaction was carried out through amino groups present on the polymer backbone with terephthaloyl chloride, resulting in the formation of C‐PTU. The monomer and polymers underwent characterization using Fourier transform infrared,1H, and13C nuclear magnetic resonance spectroscopy, with X‐ray diffraction analyzing the resin's chain alignment. Thermogravimetric and differential scanning calorimetry assessed C‐PTU's thermal properties. The adsorption process for Cu(II) ions was studied using atomic absorption spectroscopy, optimizing conditions for maximal uptake. Results revealed that C‐PTU exhibited a significant adsorption capacity for Cu(II) ions, reaching 67% after a 2 h contact time, with optimal adsorption occurring at pH 6. The Langmuir adsorption isotherm described the sorption mechanism, indicating favorable monolayer cation adsorption via coordination with donor sites on C‐PTU. This research presents a viable solution for copper ion contamination in wastewater, illustrating C‐PTU as an efficient, environmentally friendly adsorbent, marking progress toward cleaner water resources.
more »
« less
Synthesis and characterization of modular polyphosphonate homopolymers and copolymers
Abstract Linear polyphosphonates with the generic formula –[P(Ph)(X)OR′O]n– (X = S or Se) have been synthesized by polycondensations of P(Ph)(NEt2)2and a diol (HOR′OH = 1,4‐cyclohexanedimethanol, 1,4‐benzenedimethanol, tetraethylene glycol, or 1,12‐dodecanediol) followed by reaction with a chalcogen. Random copolymers have been synthesized by polycondensations of P(Ph)(NEt2)2and mixture of two of the diols in a 2:1:1 mol ratio followed by reaction with a chalcogen. Block copolymers with the generic formula –[P(Ph)(X)OR′O](x + 2)–[P(Ph)(X)OR′O](x + 3)– (X = S or Se) have been synthesized by the polycondensations of Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers with HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers followed by reaction with a chalcogen. The Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers are prepared by the reaction of an excess of P(Ph)(NEt2)2with a diol while the HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers are prepared by the reaction of P(Ph)(NEt2)2with an excess of the diol. In each case the excess, x is the same and determines the average block sizes. All of the polymers were characterized using1H,13C{1H}, and31P{1H} NMR spectroscopy, TGA, DSC, and SEC.31P{1H} NMR spectroscopy demonstrates that the random and block copolymers have the expected arrangements of monomers and, in the case of block copolymers, verifies the block sizes. All polymers are thermally stable up to ~300°C, and the arrangements of monomers in the copolymers (block vs. random) affect their degradation temperatures andTgprofiles. The polymers have weight average MWs of up to 3.8 × 104 Da.
more »
« less
- Award ID(s):
- 1632881
- PAR ID:
- 10451014
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Polymer Science
- Volume:
- 58
- Issue:
- 13
- ISSN:
- 2642-4150
- Page Range / eLocation ID:
- p. 1825-1842
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT This work investigates effects of poly(γ‐butyrolactone) (PγBL) with different initiation and termination chain ends on five types of materials properties, including thermal stability, thermal transitions, thermal recyclability, hydrolytic degradation, and dynamic mechanical behavior. Four different chain‐end‐capped polymers with similar molecular weights, BnO‐[C(=O)(CH2)3O]n‐R, R = C(=O)Me, C(=O)CH=CH2, C(=O)Ph, and SiMe2CMe3, along with a series of uncapped polymers R′O‐[C(=O)(CH2)3O]n‐H (R′ = Bn, Ph2CHCH2) withMnranging from low (4.95 kg mol−1) to high (83.2 kg mol−1), have been synthesized. The termination chain end R showed a large effect on polymer decomposition temperature and hydrolytic degradation, relative to H. Overall, for those properties sensitive to the chain ends, chain‐end capping renders R‐protected linear PγBL behaving much like cyclic PγBL. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 2271–2279more » « less
-
null (Ed.)Reaction of LiOC t Bu 2 Ph with TlPF 6 forms the dimeric Tl 2 (OC t Bu 2 Ph) 2 complex, a rare example of a homoleptic thallium alkoxide complex demonstrating formally two-coordinate metal centers. Characterization of Tl 2 (OC t Bu 2 Ph) 2 by 1 H and 13 C NMR spectroscopy and X-ray crystallography reveals the presence of two isomers differing by the mutual conformation of the alkoxide ligands, and by the planarity of the central Tl–O–Tl–O plane. Tl 2 (OC t Bu 2 Ph) 2 serves as a convenient precursor to the formation of old and new [M(OC t Bu 2 Ph) n ] complexes (M = Cr, Fe, Cu, Zn), including a rare example of T-shaped Zn(OC t Bu 2 Ph) 2 (THF) complex, which could not be previously synthesized using more conventional LiOR/HOR precursors. The reaction of [Ru(cymene)Cl 2 ] 2 with Tl 2 (OC t Bu 2 Ph) 2 results in the formation of a ruthenium( ii ) alkoxide complex. For ruthenium, the initial coordination of the alkoxide triggers C–H activation at the ortho -H of [OC t Bu 2 Ph] which results in its bidentate coordination. In addition to Tl 2 (OC t Bu 2 Ph) 2 , related Tl 2 (OC t Bu 2 (3,5-Me 2 C 6 H 3 )) 2 was also synthesized, characterized, and shown to exhibit similar reactivity with iron and ruthenium precursors. Synthetic, structural, and spectroscopic characterizations are presented.more » « less
-
Abstract Cell‐based therapies are gaining prominence in treating a wide variety of diseases and using synthetic polymers to manipulate these cells provides an opportunity to impart function that could not be achieved using solely genetic means. Herein, we describe the utility of functional block copolymers synthesized by ring‐opening metathesis polymerization (ROMP) that can insert directly into the cell membrane via the incorporation of long alkyl chains into a short polymer block leading to non‐covalent, hydrophobic interactions with the lipid bilayer. Furthermore, we demonstrate that these polymers can be imbued with advanced functionalities. A photosensitizer was incorporated into these polymers to enable spatially controlled cell death by the localized generation of1O2at the cell surface in response to red‐light irradiation. In a broader context, we believe our polymer insertion strategy could be used as a general methodology to impart functionality onto cell‐surfaces.more » « less
-
Abstract Polyphosphonates, a class of polymers with the generic formula –[P(R)(X)–OR'O]n–, exhibit a high degree of modularity due to the range of R, R', and X groups that can be incorporated. As such, these polymers may be designed with a polyethylene oxide (PEO) backbone (R' group) and employed as solid polymer electrolytes (SPEs). Two PEO‐containing polyphosphonate analogs (R = Ph; X = S or Se) were doped with LiPF6and their conductivities were measured. Conductivities were similar (X = S) to or exceeding (X = Se) those of standard PEO systems (just below 10−4S/cm at 100°C). Binding models for Li+were generated using31P{1H}NMR titration experiments. Binding of Li+by these polyphosphonates followed a positive cooperativity model, and varying the X group (S or Se) affected the observed cooperativity (Hill coefficient = 1.73 and 4.16, respectively). The presence of Se also leads to an increase in conductivity as temperature is raised above the Tg, which is likely an effect of reduced Columbic interactions. Because of their modularity and ease with which cation binding can be evaluated using31P{1H} NMR titration experiments, polyphosphonates offer a unique approach for the modification of Li+ion battery technology.more » « less