skip to main content


Title: Attentive Relational Networks for Mapping Images to Scene Graphs
Scene graph generation refers to the task of automatically mapping an image into a semantic structural graph, which requires correctly labeling each extracted object and their interaction relationships. Despite the recent success in object detection using deep learning techniques, inferring complex contextual relationships and structured graph representations from visual data remains a challenging topic. In this study, we propose a novel Attentive Relational Network that consists of two key modules with an object detection backbone to approach this problem. The first module is a semantic transformation module utilized to capture semantic embedded relation features, by translating visual features and linguistic features into a common semantic space. The other module is a graph self-attention module introduced to embed a joint graph representation through assigning various importance weights to neighboring nodes. Finally, accurate scene graphs are produced by the relation inference module to recognize all entities and the corresponding relations. We evaluate our proposed method on the widely-adopted Visual Genome dataset, and the results demonstrate the effectiveness and superiority of our model.  more » « less
Award ID(s):
1704337 1813709
NSF-PAR ID:
10103951
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Exploiting relationships between objects for image and video captioning has received increasing attention. Most existing methods depend heavily on pre-trained detectors of objects and their relationships, and thus may not work well when facing detection challenges such as heavy occlusion, tiny-size objects, and long-tail classes. In this paper, we propose a joint commonsense and relation reasoning method that exploits prior knowledge for image and video captioning without relying on any detectors. The prior knowledge provides semantic correlations and constraints between objects, serving as guidance to build semantic graphs that summarize object relationships, some of which cannot be directly perceived from images or videos. Particularly, our method is implemented by an iterative learning algorithm that alternates between 1) commonsense reasoning for embedding visual regions into the semantic space to build a semantic graph and 2) relation reasoning for encoding semantic graphs to generate sentences. Experiments on several benchmark datasets validate the effectiveness of our prior knowledge-based approach. 
    more » « less
  2. Contextual information has been widely used in many computer vision tasks. However, existing approaches design specific contextual information mechanisms for different tasks. In this work, we propose a general context learning and reasoning framework for object detection tasks with three components: local contextual labeling, contextual graph generation and spatial contextual reasoning. With simple user defined parameters, local contextual labeling automatically enlarge the small object labels to include more local contextual information. A Graph Convolutional Network learns over the generated contextual graph to build a semantic space. A general spatial relation is used in spatial contextual reasoning to optimize the detection results. All three components can be easily added and removed from a standard object detector. In addition, our approach also automates the training process to find the optimal combinations of user defined parameters. The general framework can be easily adapted to different tasks. In this paper we compare our framework with a previous multistage context learning framework specifically designed for storefront accessibility detection and a state of the art detector for pedestrian detection. Experimental results on two urban scene datasets demonstrate that our proposed general framework can achieve same performance as the specifically designed multistage framework on storefront accessibility detection, and with improved performance on pedestrian detection over the state of art detector. 
    more » « less
  3. In this work, a storefront accessibility image dataset is collected from Google street view and is labeled with three main objects for storefront accessibility: doors (for store entrances), doorknobs (for accessing the entrances) and stairs (for leading to the entrances). Then MultiCLU, a new multi-stage context learning and utilization approach, is proposed with the following four stages: Context in Labeling (CIL), Context in Training (CIT), Context in Detection (CID) and Context in Evaluation (CIE). The CIL stage automatically extends the label for each knob to include more local contextual information. In the CIT stage, a deep learning method is used to project the visual information extracted by a Faster R-CNN based object detector to semantic space generated by a Graph Convolutional Network. The CID stage uses the spatial relation reasoning between categories to refine the confidence score. Finally in the CIE stage, a new loose evaluation metric for storefront accessibility, especially for knob category, is proposed to efficiently help BLV users to find estimated knob locations. Our experiment results show that the proposed MultiCLU framework can achieve significantly better performance than the baseline detector using Faster R-CNN, with +13.4% on mAP and +15.8% on recall, respectively. Our new evaluation metric also introduces a new way to evaluate storefront accessibility objects, which could benefit BLV group in real life. 
    more » « less
  4. Homology of human and machine vision systems demonstrates that better machine could be designed with human assistance. Similar components can be mapped from neuroimaging data to visual features for recognizing an object. However, inferring object relationships from human vision and machine vision are not clear. To measure the similarity of human and machine visual inference, this work study an inference method using Microsoft COCO dataset. The input data is manually generated, and used for a java-based inference engine, which collects semantic data in a co-occurrence matrix, and writes the data to a knowledge graph in the DOT language. Unlike the black-box property of deep neural network, the proposed method is transparent. When rendered by GraphViz tools, the visible results in the knowledge graph indicated that the COCO dataset-based machine inference is promising when compared to human inference, yielding an accuracy of 64% at best. This novel inference study on the COCO dataset reveals that homology of human and machine vision systems is promising to be bridged. Bigger dataset and more concepts may increase the accuracy in the future work. 
    more » « less
  5. This paper presents an approach to detect out-of-context (OOC) objects in an image. Given an image with a set of objects, our goal is to determine if an object is inconsistent with the scene context and detect the OOC object with a bounding box. In this work, we consider commonly explored contextual relations such as co-occurrence relations, the relative size of an object with respect to other objects, and the position of the object in the scene. We posit that contextual cues are useful to determine object labels for in-context objects and inconsistent context cues are detrimental to determining object labels for out-of-context objects. To realize this hypothesis, we propose a graph contextual reasoning network (GCRN) to detect OOC objects. GCRN consists of two separate graphs to predict object labels based on the contextual cues in the image: 1) a representation graph to learn object features based on the neighboring objects and 2) a context graph to explicitly capture contextual cues from the neighboring objects. GCRN explicitly captures the contextual cues to improve the detection of in-context objects and identify objects that violate contextual relations. In order to evaluate our approach, we create a large-scale dataset by adding OOC object instances to the COCO images. We also evaluate on recent OCD benchmark. Our results show that GCRN outperforms competitive baselines in detecting OOC objects and correctly detecting in-context objects. 
    more » « less