Four new three-dimensional (3-D) coordination frameworks based on the heptacyanomolybdate( iii ) anion were prepared and characterised by magnetic measurements: {[Mn II (imH) 2 ] 2 [Mn II (H 2 O)(imH) 3 ][Mn II (imH) 4 ] [Mo III (CN) 7 ] 2 ·6H 2 O} n ( 1 ) (imH = imidazole), {[Mn II (H 2 O) 2 (imH)] 3 [Mn II (H 2 O)(imH) 2 ][Mo III (CN) 7 ] 2 ·5H 2 O} n ( 2 ), {[Mn II (Htrz)(H 2 O) 2 ][Mn II (Htrz) 0.7 (H 2 O) 2.3 ][Mo III (CN) 7 ]·5.6H 2 O} n ( 3 ) (Htrz = 1,2,4-triazole) and {[Mn II (H 2 O) 2 ] 3 [Mn II (H 2 O) 4 ][Mo III (CN) 7 ] 2 ·6H 2 O·2urea} n ( 4 ). All four compounds exhibit long-range ferrimagnetic ordering and exhibit an opening of their magnetic hysteresis loops at 1.8 K; 1 and 2 exhibit the highest coercive fields among all known [Mo III (CN) 7 ]-based assemblies, 5000 and 4500 Oe respectively. The coercivity of 1–4 is correlated with the geometry of the heptacyanomolybdate( iii ) anion and the cyanide bridging pattern. A paramagnetic analogue of compound 1 , {[Mn II (imH) 2 ] 2 [Mn II (H 2 O)(imH) 3 ][Mn II (imH) 4 ][Re III (CN) 7 ] 2 ·6H 2 O} n ( 1Re ), where the heptacyanomolybdate( iii ) anion is substituted by the diamagnetic heptacyanorhenate( iii ) anion is also reported which constitutes the first example of a coordination framework based on [Re III (CN) 7 ] 4− .
more »
« less
Triazole-imidazole (TA-IM) derivatives as ultrafast fluorescent probes for selective Ag + detection
1,2,3-Triazole-imidazole derivatives (TA-IM) were prepared as fluorescent probes for silver ion detection. The design principle is the incorporation of an intramolecular H-bond between the imidazole and triazole moiety that enables a co-planar conformation to achieve fluorescence emission in the UV-blue range. Screening of different metal ions revealed excellent binding affinity of this new class of compounds toward silver ions in aqueous solution. The novel probe provided ultrafast detection (<30 s) even for a very low concentration of silver ions (in the nM range) with good linear correlation, making it a practical sensor for detection of silver ions.
more »
« less
- Award ID(s):
- 1665122
- PAR ID:
- 10103974
- Date Published:
- Journal Name:
- Organic & Biomolecular Chemistry
- Volume:
- 16
- Issue:
- 42
- ISSN:
- 1477-0520
- Page Range / eLocation ID:
- 7801 to 7805
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The syntheses and detailed characterizations (X-ray crystallography, NMR spectroscopy, cyclic voltammetry, infrared spectroscopy, electrospray mass spectrometry, and elemental analyses) of two new Cu(I) pincer complexes are reported. The pincer ligand coordinates through one nitrogen and two sulfur donor atoms and is based on bis-imidazole or bis-triazole precursors. These tridentate SNS ligands incorporate pyridine and thione-substituted imidazole or triazole functionalities with connecting methylene units that provide flexibility to the ligand backbone and enable high bite-angle binding. Variable temperature 1H NMR analysis of these complexes and of a similar zinc(II) SNS system shows that all are fluxional in solution and permits the determination of delta G double dagger and delta S double dagger. DFT calculations are used to model the fluxionality of these complexes and indicate that a coordinating solvent molecule can promote hemilability of the SNS ligand by lowering the energy barrier involved in the partial rotation of the methylene units.more » « less
-
Invasive fungal infections are increasing worldwide due to an expanding number of immunocompromised patients as well as an increase in drug-resistant fungi. While fungal resistance has increased, this resistance has not been accompanied by the development of new antifungals. A common class of antifungal agents that are prescribed are the azoles, which contain either a triazole or an imidazole group. Unfortunately, current azoles, like fluconazole, have been shown to be less effective with the increase in resistant fungal pathogens. Therefore, the development of novel azole antifungal compounds is of urgent need. The objective of this research was to synthesize triazole-containing small molecules with potent antifungal activity. The scaffold of the synthesized compounds contains a triazole moiety and was synthesized via a copper-catalyzed azide-alkyne click reaction (CuAAC) between the appropriate alkyne and azide intermediates. The minimum inhibitory concentrations of these compounds were determined using standard broth microdilution assays against opportunistic bacteria and fungi associated with life-threatening invasive fungal infections. Although the synthesized compounds possessed no antimicrobial activity, these results can be used to further the long-term goal of developing and optimizing lead compounds with potentin vitroantifungal activity.more » « less
-
Abstract A series of Co2+/3+and Fe2+/3+complexes is prepared using three variants of a hexadentate tris(imidazole)triazacyclononane ligand bearing different 4‐alkyl substituents on the imidazole rings. The steric bulk of the alkyl substituent (R=H,iPr, ortBu) alters the preferred size of the ligand binding cavity by inhibiting close approach of the imidazole donors with bulky substituents. The resulting changes in geometry, redox potentials, spin states, and optical properties are catalogued across the series, demonstrating redox potential tuning over at least 670 mV as well as spin state switching based on the choice of substituent. The ligand field splitting of the complexes decreases with increasing bulk of the substituents. Tuning of the steric bulk of the substituents in these positions therefore allows for the electronic properties of the complexes to be fine‐tuned in a manner orthogonal to the donor properties of the substituents.more » « less
An official website of the United States government

