Surface charge is a key characteristic of nanoparticles which has great potential to impact the interactions of nanoparticles and biological systems. Understanding the role charge plays in these interactions is key to determining the ecological risks of nanoparticle exposure and informing sustainable nanoparticle design. In this study, the model freshwater algae Raphidocelis subcapitata was exposed to carbon dots (CDs) functionalized with polymers to have positive, negative, or neutral surface charges to examine the impact of nanoparticle surface charge on nano-algae interactions. Traditional toxicological endpoints of survival and growth inhibition were measured. Additionally, morphological impacts on whole cells, individual organelles, and cellular components were quantified using high-content fluorescence microscopy, demonstrating one of the first uses of high-content imaging in microalgae. Results indicate that PEI functionalized, positively charged CDs are most toxic to green algae (EC50 42.306 μg/L), but that CDs with negative charge induce sublethal impacts on algae. PEI-CD toxicity is hypothesized to be related to electrostatic interactions between CDs and the algal cell wall, which lead to significant cell aggregation. Interestingly, morphological data suggests that exposure to both positively and negatively charged CDs leads to increased neutral lipid droplet formation, a possible indicator of nutrient stress. Further investigation of the mechanisms underlying impacts of nanoparticle surface charge on algae biology can lead to more sustainable nanoparticle design and environmental protections.
more »
« less
Enhanced host–guest complexation of short chain perfluoroalkyl substances with positively charged β-cyclodextrin derivatives
Short chain perfluoroalkyl substances (PFAS), replacements for long chain legacy PFAS such as perfluorooctanoic acid (PFOA), have similar toxicity, negative health effects, and exceptional persistence as long chain PFAS. β-Cyclodextrin (β-CD) is a powerful host–guest complexing agent for a number of legacy PFAS, suggesting potential β-CD-based remediation processes. We report herein that the addition of charged functional groups at the perimeter of β-CD has a pronounced influence on the strength of the β-CD:PFAS complex. The presence of a positively charged amine functionality on the perimeter of β-CD significantly increases the complexation of legacy and short chain PFAS. We assigned the enhanced complexation to electrostatic attraction between the negatively charged PFAS head group and the positively charged β-CD derivative. In comparison to neutral β-CD, addition of a negative charge to β-CD decreases complexation to PFAS due to electrostatic repulsion between the negatively charged polar head group of PFAS and the negatively charged β-CD. 19F NMR titration experiments illustrate the complexation of short chain PFAS by positive charged β-CDs over neutral β-CD, with increases up to 20 times depending on the PFAS guest. The results give further understanding to the nature of the β-CD:PFAS host–guest complex and the various intermolecular forces that drive complexation. Positively charged β-CDs appear to be potential complexing agents for remediation of short chain PFAS.
more »
« less
- PAR ID:
- 10104074
- Date Published:
- Journal Name:
- Journal of Inclusion Phenomena and Macrocyclic Chemistry
- ISSN:
- 1388-3127
- Page Range / eLocation ID:
- 1 - 7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A lack of mechanistic understanding of nanomaterial interactions with plants and algae cell walls limits the advancement of nanotechnology-based tools for sustainable agriculture. We systematically investigated the influence of nanoparticle charge on the interactions with model cell wall surfaces built with cellulose or pectin and performed a comparative analysis with native cell walls of Arabidopsis plants and green algae (Choleochaete). The high affinity of positively charged carbon dots (CDs) (46.0 ± 3.3 mV, 4.3 ± 1.5 nm) to both model and native cell walls was dominated by the strong ionic bonding between the surface amine groups of CDs and the carboxyl groups of pectin. In contrast, these CDs formed weaker hydrogen bonding with the hydroxyl groups of cellulose model surfaces. The CDs of similar size with negative (−46.2 ± 1.1 mV, 6.6 ± 3.8 nm) or neutral (−8.6 ± 1.3 mV, 4.3 ± 1.9 nm) ζ-potentials exhibited negligible interactions with cell walls. Real-time monitoring of CD interactions with model pectin cell walls indicated higher absorption efficiency (3.4 ± 1.3 10−9) and acoustic mass density (313.3 ± 63.3 ng cm–2) for the positively charged CDs than negative and neutral counterparts (p < 0.001 and p < 0.01, respectively). The surface charge density of the positively charged CDs significantly enhanced these electrostatic interactions with cell walls, pointing to approaches to control nanoparticle binding to plant biosurfaces. Ca2+-induced cross-linking of pectin affected the initial absorption efficiency of the positively charged CD on cell wall surfaces (∼3.75 times lower) but not the accumulation of the nanoparticles on cell wall surfaces. This study developed model biosurfaces for elucidating fundamental interactions of nanomaterials with cell walls, a main barrier for nanomaterial translocation in plants and algae in the environment, and for the advancement of nanoenabled agriculture with a reduced environmental impact.more » « less
-
Biological nanopores are increasingly used in molecular sensing due to their single-molecule sensitivity. The detection of per- and polyfluoroalkyl substances (PFAS) like perfluorooctanoic acid and perfluorooctane sulfonic acid is critical due to their environmental prevalence and toxicity. Here, we investigate selective interactions between PFAS and four cyclodextrin (CD) variants (α-, β-, γ-, and 2-hydroxypropyl-γ-CD) within an α-hemolysin nanopore. We demonstrate that PFAS molecules can be electrochemically sensed by interacting with a γ-CD in a nanopore. Using HP-γ-CDs with increased steric resistance, we can identify homologs of the perfluoroalkyl carboxylic acid and the perfluoroalkyl sulfonic acid families and detect common PFAS in drinking water at 0.4 to 2 parts per million levels, which are further lowered to 400 parts per trillion by sample preconcentration. Molecular dynamics simulations reveal the underlying chemical mechanism of PFAS-CD interactions. These insights pave the way toward nanopore-based in situ detection with promises in environmental protection against PFAS pollution.more » « less
-
Although most manufacturers stopped using long-chain per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), short-chain PFASs are still widely employed. Short-chain PFASs are less known in terms of toxicity and have different adsorption behavior from long-chain PFASs. Previous studies have shown electrostatic interaction with the adsorbent to be the dominant mechanism for the removal of short-chain PFASs. In this study, we designed a high charge density cationic quaternized nanocellulose (QNC) to enhance the removal of both short- and long-chain PFASs from contaminated water. Systematic batch adsorption tests were conducted using the QNC adsorbent to compare its efficiency against PFASs with varying chain lengths and functional groups. From the kinetic study, PFBA (perfluorobutanoic acid), PFBS (perfluorobutanesulfonic acid) and PFOS showed rapid adsorption rates, which reached near equilibrium values (>95% of removal) between 1 min to 15 min, while PFOA required a relatively longer equilibration time of 2 h (it obtained 90% of removal within 15 min). According to the isotherm results, the maximum adsorption capacity ( Q m ) of the QNC adsorbent exhibited the following trend: PFOS ( Q m = 559 mg g −1 or 1.12 mmol g −1 ) > PFOA ( Q m = 405 mg g −1 or 0.98 mmol g −1 ) > PFBS ( Q m = 319 mg g −1 or 1.06 mmol g −1 ) > PFBA ( Q m = 121 mg g −1 or 0.57 mmol g −1 ). This adsorption order generally matches the hydrophobicity trend among four PFASs associated with both PFAS chain length and functional group. In competitive studies, pre-adsorbed short-chain PFASs were quickly desorbed by long-chain PFASs, suggesting that the hydrophobicity of the molecule played an important role in the adsorption process on to QNC. Finally, the developed QNC adsorbent was tested to treat PFAS-contaminated groundwater, which showed excellent removal efficiency (>95%) for long-chain PFASs (C7–C9) even at a low adsorbent dose of 32 mg L −1 . However, short-chain PFASs ( i.e. , PFBA and perfluoropentanoic acid (PFPeA)) were poorly removed by the QNC adsorbent (0% and 10% removal, respectively) due to competing constituents in the groundwater matrix. This was further confirmed by controlled experiments that revealed a drop in the performance of QNC to remove short-chain PFASs at elevated ionic strength (NaCl), but not for long-chain PFASs, likely due to charge neutralization of the anionic functional group of PFASs by inorganic cations. Overall, the QNC adsorbent featured improved PFAS adsorption capacity at almost two-fold of PFAS removal by granular activated carbons, especially for short-chain PFASs. We believe, QNC can complement the use of common treatment methods such as activated carbon or ionic exchange resin to remove a wide range of PFAS pollutants, heading towards the complete remediation of PFAS contamination.more » « less
-
Intrinsically disordered regions (IDRs) are important components of protein functionality, with their charge distribution serving as a key factor in determining their roles. Notably, many proteins possess IDRs that are highly negatively charged, characterized by sequences rich in aspartate (D) or glutamate (E) residues. Bioinformatic analyses indicate that negatively charged low-complexity IDRs are significantly more common than their positively charged counterparts rich in arginine (R) or lysine (K). For instance, sequences of 10 or more consecutive negatively charged residues (D or E) are present in 268 human proteins. In contrast, corresponding sequences of 10 or more consecutive positively charged residues (K or R) are present in only 12 human proteins. Interestingly, about 50% of proteins containing D/E tracts function as DNA-binding or RNA-binding proteins. Negatively charged IDRs can electrostatically mimic nucleic acids and dynamically compete with them for the DNA-binding domains (DBDs) or RNA-binding domains (RBDs) that are positively charged. This leads to a phenomenon known as autoinhibition, in which the negatively charged IDRs inhibit binding to nucleic acids by occupying the binding interfaces within the proteins through intramolecular interactions. Rather than merely reducing binding activity, negatively charged IDRs offer significant advantages for the functions of DNA/RNA-binding proteins. The dynamic competition between negatively charged IDRs and nucleic acids can accelerate the target search processes for these proteins. When a protein encounters DNA or RNA, the electrostatic repulsion force between the nucleic acids and the negatively charged IDRs can trigger conformational changes that allow the nucleic acids to access DBDs or RBDs. Additionally, when proteins are trapped at high-affinity non-target sites on DNA or RNA ("decoys"), the electrostatic repulsion from the negatively charged IDRs can rescue the proteins from these traps. Negatively charged IDRs act as gatekeepers, rejecting nonspecific ligands while allowing the target to access the molecular interfaces of DBDs or RBDs, which increases binding specificity. These IDRs can also promote proper protein folding, facilitate chromatin remodeling by displacing other proteins bound to DNA, and influence phase separation, affecting local pH. The functions of negatively charged IDRs can be regulated through protein-protein interactions, post-translational modifications, and proteolytic processing. These characteristics can be harnessed as tools for protein engineering. Some frame-shift mutations that convert negatively charged IDRs into positively charged ones are linked to human diseases. Therefore, it is crucial to understand the physicochemical properties and functional roles of negatively charged IDRs that compete with nucleic acids.more » « less
An official website of the United States government

