skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: To Ship or Not to (Function) Ship
Sampling is often used to reduce query latency for interactive big data analytics. The established parallel data processing paradigm relies on function shipping, where a coordinator dispatches queries to worker nodes and then collects the results. The commoditization of high-performance networking makes data shipping possible, where the coordinator directly reads data in the workers’ memory using RDMA while workers process other queries. In this work, we explore when to use function shipping or data shipping for interactive query processing with sampling. Whether function shipping or data shipping should be preferred depends on the amount of data transferred, the current CPU utilization and the sampling method. The results show that data shipping is up to 6.5× faster when performing clustered sampling with heavily-utilized workers.  more » « less
Award ID(s):
1816577
NSF-PAR ID:
10104373
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2018 IEEE High Performance Extreme Computing Conference (HPEC '18)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Query driven cardinality estimation models learn from a historical log of queries. They are lightweight, having low storage requirements, fast inference and training, and are easily adaptable for any kind of query. Unfortunately, such models can suffer unpredictably bad performance under workload drift, i.e., if the query pattern or data changes. This makes them unreliable and hard to deploy. We analyze the reasons why models become unpredictable due to workload drift, and introduce modifications to the query representation and neural network training techniques to make query-driven models robust to the effects of workload drift. First, we emulate workload drift in queries involving some unseen tables or columns by randomly masking out some table or column features during training. This forces the model to make predictions with missing query information, relying more on robust features based on up-to-date DBMS statistics that are useful even when query or data drift happens. Second, we introduce join bitmaps, which extends sampling-based features to be consistent across joins using ideas from sideways information passing. Finally, we show how both of these ideas can be adapted to handle data updates.

    We show significantly greater generalization than past works across different workloads and databases. For instance, a model trained with our techniques on a simple workload (JOBLight-train), with 40ksynthetically generated queries of at most 3 tables each, is able to generalize to the much more complex Join Order Benchmark, which include queries with up to 16 tables, and improve query runtimes by 2× over PostgreSQL. We show similar robustness results with data updates, and across other workloads. We discuss the situations where we expect, and see, improvements, as well as more challenging workload drift scenarios where these techniques do not improve much over PostgreSQL. However, even in the most challenging scenarios, our models never perform worse than PostgreSQL, while standard query driven models can get much worse than PostgreSQL.

     
    more » « less
  2. For a graph G on n vertices, naively sampling the position of a random walk of at time t requires work Ω(t). We desire local access algorithms supporting positionG(t) queries, which return the position of a random walk from some fixed start vertex s at time t, where the joint distribution of returned positions is 1/ poly(n) close to those of a uniformly random walk in ℓ1 distance. We first give an algorithm for local access to random walks on a given undirected d-regular graph with eO( 1 1−λ √ n) runtime per query, where λ is the second-largest eigenvalue of the random walk matrix of the graph in absolute value. Since random d-regular graphs G(n, d) are expanders with high probability, this gives an eO(√ n) algorithm for a graph drawn from G(n, d) whp, which improves on the naive method for small numbers of queries. We then prove that no algorithm with subconstant error given probe access to an input d-regular graph can have runtime better than Ω(√ n/ log(n)) per query in expectation when the input graph is drawn from G(n, d), obtaining a nearly matching lower bound. We further show an Ω(n1/4) runtime per query lower bound even with an oblivious adversary (i.e. when the query sequence is fixed in advance). We then show that for families of graphs with additional group theoretic structure, dramatically better results can be achieved. We give local access to walks on small-degree abelian Cayley graphs, including cycles and hypercubes, with runtime polylog(n) per query. This also allows for efficient local access to walks on polylog degree expanders. We show that our techniques apply to graphs with high degree by extending or results to graphs constructed using the tensor product (giving fast local access to walks on degree nϵ graphs for any ϵ ∈ (0, 1]) and Cartesian product. 
    more » « less
  3. Range aggregate queries (RAQs) are an integral part of many real-world applications, where, often, fast and approximate answers for the queries are desired. Recent work has studied answering RAQs using machine learning (ML) models, where a model of the data is learned to answer the queries. However, there is no theoretical understanding of why and when the ML based approaches perform well. Furthermore, since the ML approaches model the data, they fail to capitalize on any query specific information to improve performance in practice. In this paper, we focus on modeling "queries" rather than data and train neural networks to learn the query answers. This change of focus allows us to theoretically study our ML approach to provide a distribution and query dependent error bound for neural networks when answering RAQs. We confirm our theoretical results by developing NeuroSketch, a neural network framework to answer RAQs in practice. Extensive experimental study on real-world, TPC-benchmark and synthetic datasets show that NeuroSketch answers RAQs multiple orders of magnitude faster than state-of-the-art and with better accuracy. 
    more » « less
  4. Advances in technology coupled with the availability of low-cost sensors have resulted in the continuous generation of large time series from several sources. In order to visually explore and compare these time series at different scales, analysts need to execute online analytical processing (OLAP) queries that include constraints and group-by's at multiple temporal hierarchies. Effective visual analysis requires these queries to be interactive. However, while existing OLAP cube-based structures can support interactive query rates, the exponential memory requirement to materialize the data cube is often unsuitable for large data sets. Moreover, none of the recent space-efficient cube data structures allow for updates. Thus, the cube must be re-computed whenever there is new data, making them impractical in a streaming scenario. We propose Time Lattice, a memory-efficient data structure that makes use of the implicit temporal hierarchy to enable interactive OLAP queries over large time series. Time Lattice is a subset of a fully materialized cube and is designed to handle fast updates and streaming data. We perform an experimental evaluation which shows that the space efficiency of the data structure does not hamper its performance when compared to the state of the art. In collaboration with signal processing and acoustics research scientists, we use the Time Lattice data structure to design the Noise Profiler, a web-based visualization framework that supports the analysis of noise from cities. We demonstrate the utility of Noise Profiler through a set of case studies. 
    more » « less
  5. null (Ed.)
    Online sampling-supported visual analytics is increasingly important, as it allows users to explore large datasets with acceptable approximate answers at interactive rates. However, existing online spatiotemporal sampling techniques are often biased, as most researchers have primarily focused on reducing computational latency. Biased sampling approaches select data with unequal probabilities and produce results that do not match the exact data distribution, leading end users to incorrect interpretations. In this paper, we propose a novel approach to perform unbiased online sampling of large spatiotemporal data. The proposed approach ensures the same probability of selection to every point that qualifies the specifications of a user's multidimensional query. To achieve unbiased sampling for accurate representative interactive visualizations, we design a novel data index and an associated sample retrieval plan. Our proposed sampling approach is suitable for a wide variety of visual analytics tasks, e.g., tasks that run aggregate queries of spatiotemporal data. Extensive experiments confirm the superiority of our approach over a state-of-the-art spatial online sampling technique, demonstrating that within the same computational time, data samples generated in our approach are at least 50% more accurate in representing the actual spatial distribution of the data and enable approximate visualizations to present closer visual appearances to the exact ones. 
    more » « less