skip to main content


Title: Automated Item Matching and Pricing (IMP) for Wood Building Elements to Support BIM-Based Wood Construction Cost Estimation
A major gap in the automation of construction cost estimation is the need of manual inputs to complete cost estimation processes. To address this gap, the authors propose a new method for matching wood building elements from a Building Information Modeling (BIM)-based design to cost data entries in a cost database. The proposed method uses a java constructor and HashMap to create objects, and store and retrieve the created values of the objects. Term matching and natural language processing (NLP) techniques are used in the method to match items from a design model and automatically extract their unit costs from a cost database. These unit costs retrieved are then used in generating the cost estimates. The proposed method was tested on estimating a wood construction model retrieved online. A cost estimate was successfully generated. Comparison of the experimental results with results from the state-of-the-art commercial software showed that the algorithms developed from the proposed method reduced the manual inputs required in generating wood construction cost estimates.  more » « less
Award ID(s):
1745374
NSF-PAR ID:
10104666
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASCE International Conference on Computing in Civil Engineering 2019
Page Range / eLocation ID:
402 to 409
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In achieving full automation of construction cost estimation, the complete processes involved in computing cost estimates must be automated. The typical processes involved in achieving cost estimates are: (1) classification and matching of model elements to their various categories; (2) taking off quantities from design documents or building information models; (3) retrieving unit cost from a cost database; and (4) applying the unit costs and quantities in computing the cost estimate. Although, the level of automation in quantity takeoff has been relatively high, most commercial software programs still require manual inputs from estimators to: (1) match materials of building elements to work items; and/or (2) fulfill essential information requirements that may be missing from design models for accurate cost estimate computations. These missing information are usually obtained from the construction specifications in supplement to the design models. Automating the process of design information extraction from construction specifications can help reduce: (1) the time and cost of the estimation, (2) the manual inputs required in cost estimation computations, and (3) human errors in cost estimates. This paper explores the use of natural language processing techniques to help process construction specifications and the authors propose a new algorithmic method for extracting the needed design information from construction specifications to support wood construction cost estimation. A case study was conducted on a wood construction project to evaluate the authors’ proposed method. The results showed that the proposed method successfully searched for and found design details from construction specifications to fulfil essential information requirements for detailed wood construction cost estimation, with a 94.9% precision and a 97.4% recall. 
    more » « less
  2. Abstract Rising global emission have led to a renewed popularity of timber in building design, including timber-concrete tall buildings up to 18 stories. In spite of this surge in wood construction, there remains a gap in understanding of long-term structural behavior, particularly wood creep. Unlike concrete, code prescriptions for wood design are lacking in robust estimates for structural shortening. Models for wood creep have become increasingly necessary due to the potential for unforeseen shortening, especially with respect to differential shortening. These effects can have serious impacts as timber building heights continue to grow. This study lays the groundwork for wood compliance prediction models for use in timber design. A thorough review of wood creep studies was conducted and viable experimental results were compiled into a database. Studies were chosen based on correlation of experimental conditions with a realistic building environment. An unbiased parameter identification method, originally applied to concrete prediction models, was used to fit multiple compliance functions to each data curve. Based on individual curve fittings, statistical analysis was performed to determine the best fit function and average parameter values for the collective database. A power law trend in wood creep, with lognormal parameter distribution, was confirmed by the results. 
    more » « less
  3. Offsite construction (e.g., wood modular houses) has many advantages over traditional stick-built construction, ranging from schedule/cost reduction to improvement in safety and quality of the built product. Unlike stick-built, offsite construction demands higher levels of design and planning coordination at the early stages of the construction project to avoid cost overruns and/or delays. However, most companies still rely on 2D drawings in the development of shop drawings, which are required for the fabrication of the building components such as walls and roofs. In practice, the process of developing shop drawings is usually based on manually interpreting the 2D drawings and specifications, which is time-consuming, costly, and prone to human errors. A 3D information model can improve the accuracy of this process. To help achieve this, the authors developed a semi-automated method that can process 2D orthographic views of building components and convert them to 3D models, which can be useful for fabrication. The developed 3D information model can be further transformed to building information models (BIMs) to support collaboration amongst users and data exchanges across platforms. The developed method was evaluated in the development of wall components of a student apartment project in Kalamazoo, MI. Experimental results showed that the developed method successfully generated the 3D information model of the wall components. A time comparison with the state-of-the-art practices in developing the wall components was performed. Results showed that the developed method utilized approximately 22% of the time it took the state-of-the-art manual method to generate the 3D models. 
    more » « less
  4. Building information modeling (BIM) is widely used in the architectural, engineering, and construction (AEC) domain to support different applications such as cost estimation, planning & scheduling, and structural analysis. Structural analysis is an essential way to ensure structural safety. However, different structural analysis software may not process all information from building information models (BIMs) correctly, which impedes BIM interoperability. To address this problem, the authors proposed a new method for automatically checking information completeness of BIMs to support BIM usage in structural analysis in an interoperable manner. The method was tested in an experimental implementation using python programs and a structural analysis software. The checking results using the proposed method was compared with results from a manual checking and a Model View Definition (MVD)-based checking, respectively. The experiment showed a comparable or better performance of the proposed method in accuracy and efficiency than manual checking and MVD-based checking. Furthermore, the proposed method overcomes the scope limitation possessed by MVD-based checking. Therefore, the proposed information checking method is expected to support BIM interoperability by helping people identify missing information from IFC-based BIMs. The authors also proposed a new system model for the BIM information checking domain [i.e., information, model, application, and application context (IMAAC) model]. 
    more » « less
  5. Building Information Modelling (BIM) is an integrated informational process and plays a key role in enabling efficient planning and control of a project in the Architecture, Engineering, and Construction (AEC) domain. Industry Foundation Classes (IFC)-based BIM allows building information to be interoperable among different BIM applications. Different stakeholders take different responsibilities in a project and therefore keep different types of information to meet project requirements. In this paper, the authors proposed and adopted a six-step methodology to support BIM interoperability between architectural design and structural analysis at both AEC project level and information level, in which: (1) the intrinsic and extrinsic information transferred between architectural models and structural models were analyzed and demonstrated by a Business Process Model and Notation (BPMN) model that the authors developed; (2) the proposed technical routes with different combinations, and their applications to different project delivery methods provided new instruments to stakeholders in industry for efficient and accurate decision-making; (3) the material centered invariant signature with portability can improve information exchange between different data formats and models to support interoperable BIM applications; and (4) a developed formal material information representation and checking method was tested on a case study where its efficiency was demonstrated to outperform: (1) proprietary representations and information checking method based on a manual operation, and (2) MVD-based information checking method. The proposed invariant signatures-based material information representation and checking method brings a better efficiency for information transfer between architectural design and structural analysis, which can have significant positive effect on a project delivery, due to the frequent and iterative update of a project design. This improves the information transfer and coordination between architects and structural engineers and therefore the efficiency of the whole project. The proposed method can be extended and applied to other application phases and functions such as cost estimation, scheduling, and energy analysis. 
    more » « less