skip to main content

Title: Semi-Automated Conversion of 2D Orthographic Views of Wood Building Components to 3D Information Models
Offsite construction (e.g., wood modular houses) has many advantages over traditional stick-built construction, ranging from schedule/cost reduction to improvement in safety and quality of the built product. Unlike stick-built, offsite construction demands higher levels of design and planning coordination at the early stages of the construction project to avoid cost overruns and/or delays. However, most companies still rely on 2D drawings in the development of shop drawings, which are required for the fabrication of the building components such as walls and roofs. In practice, the process of developing shop drawings is usually based on manually interpreting the 2D drawings and specifications, which is time-consuming, costly, and prone to human errors. A 3D information model can improve the accuracy of this process. To help achieve this, the authors developed a semi-automated method that can process 2D orthographic views of building components and convert them to 3D models, which can be useful for fabrication. The developed 3D information model can be further transformed to building information models (BIMs) to support collaboration amongst users and data exchanges across platforms. The developed method was evaluated in the development of wall components of a student apartment project in Kalamazoo, MI. Experimental results showed that the more » developed method successfully generated the 3D information model of the wall components. A time comparison with the state-of-the-art practices in developing the wall components was performed. Results showed that the developed method utilized approximately 22% of the time it took the state-of-the-art manual method to generate the 3D models. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Construction Research Congress 2022
Page Range or eLocation-ID:
995 to 1003
Sponsoring Org:
National Science Foundation
More Like this
  1. In achieving full automation of construction cost estimation, the complete processes involved in computing cost estimates must be automated. The typical processes involved in achieving cost estimates are: (1) classification and matching of model elements to their various categories; (2) taking off quantities from design documents or building information models; (3) retrieving unit cost from a cost database; and (4) applying the unit costs and quantities in computing the cost estimate. Although, the level of automation in quantity takeoff has been relatively high, most commercial software programs still require manual inputs from estimators to: (1) match materials of building elements to work items; and/or (2) fulfill essential information requirements that may be missing from design models for accurate cost estimate computations. These missing information are usually obtained from the construction specifications in supplement to the design models. Automating the process of design information extraction from construction specifications can help reduce: (1) the time and cost of the estimation, (2) the manual inputs required in cost estimation computations, and (3) human errors in cost estimates. This paper explores the use of natural language processing techniques to help process construction specifications and the authors propose a new algorithmic method for extracting themore »needed design information from construction specifications to support wood construction cost estimation. A case study was conducted on a wood construction project to evaluate the authors’ proposed method. The results showed that the proposed method successfully searched for and found design details from construction specifications to fulfil essential information requirements for detailed wood construction cost estimation, with a 94.9% precision and a 97.4% recall.« less
  2. Large-scale concrete 3D printing and digital construction has brought enormous potential to expand the design space of building components (e.g., building envelope) for the integration of multiple architectural functionalities including energy saving. In this research, a modular 3D printed vertical concrete green wall system – namely the 3D-VtGW, was developed. The 3D-VtGW envelope was assembled with prefabricated (3D printed) multifunctional wall modular elements, which serves as the enclosure of the building as well as the backbone for a green wall system to improve building’s energy efficiency. Using this design concept and large-scale concrete 3D printing, a prototype commercial building was built in Nanjing, China. To quantify the energy-saving potential of the 3D-VtGW system, a thermal network model was developed to simulate the thermal behavior of buildings with 3D-VtGW system and for thermal comfort analysis. Whole-building energy simulation was carried out using Chinese Standard Weather Data (CSWD) o Nanjing, China. The simulation results indicate that the building with 3D-VtGW exhibited prominent potential for energy saving and improved thermal comfort. The integrated greenery system in 3D-VtGW largely reduces wall exterior surface temperature and through-wall heat flux via the combined effects of plant shading, evapotranspiration, and heat storage from soil. This study presentsmore »the immense opportunities brought by digital fabrication and construction to extend the design space and function integration in buildings.« less
  3. Building Information Modelling (BIM) is an integrated informational process and plays a key role in enabling efficient planning and control of a project in the Architecture, Engineering, and Construction (AEC) domain. Industry Foundation Classes (IFC)-based BIM allows building information to be interoperable among different BIM applications. Different stakeholders take different responsibilities in a project and therefore keep different types of information to meet project requirements. In this paper, the authors proposed and adopted a six-step methodology to support BIM interoperability between architectural design and structural analysis at both AEC project level and information level, in which: (1) the intrinsic and extrinsic information transferred between architectural models and structural models were analyzed and demonstrated by a Business Process Model and Notation (BPMN) model that the authors developed; (2) the proposed technical routes with different combinations, and their applications to different project delivery methods provided new instruments to stakeholders in industry for efficient and accurate decision-making; (3) the material centered invariant signature with portability can improve information exchange between different data formats and models to support interoperable BIM applications; and (4) a developed formal material information representation and checking method was tested on a case study where its efficiency was demonstrated tomore »outperform: (1) proprietary representations and information checking method based on a manual operation, and (2) MVD-based information checking method. The proposed invariant signatures-based material information representation and checking method brings a better efficiency for information transfer between architectural design and structural analysis, which can have significant positive effect on a project delivery, due to the frequent and iterative update of a project design. This improves the information transfer and coordination between architects and structural engineers and therefore the efficiency of the whole project. The proposed method can be extended and applied to other application phases and functions such as cost estimation, scheduling, and energy analysis.« less
  4. This paper introduces a web-based interactive educational platform for 3D/polyhedral graphic statics (PGS) [1]. The Block Research Group (BRG) at ETH Zürich developed a dynamic learning and teaching platform for structural design. This tool is based on traditional graphic statics. It uses interactive 2D drawings to help designers and engineers with all skill levels to understand and utilize the methods [2]. However, polyhedral graphic statics is not easy to learn because of its characteristics in three-dimensional. All the existing computational design tools are heavily dependent on the modeling software such as Rhino or the Python-based computational framework like Compass [3]. In this research, we start with the procedural approach, developing libraries using JavaScript, Three.js, and WebGL to facilitate the construction by making it independent from any software. This framework is developed based on the mathematical and computational algorithms deriving the global equilibrium of the structure, optimizing the balanced relationship between the external magnitudes and the internal forces, visualizing the dynamic reciprocal polyhedral diagrams with corresponding topological data. This instant open-source application and the visualization interface provide a more operative platform for students, educators, practicers, and designers in an interactive manner, allowing them to learn not only the topological relationship butmore »also to deepen their knowledge and understanding of structures in the steps for the construction of the form and force diagrams and analyze it. In the simplified single-node example, the multi-step geometric procedures intuitively illustrate 3D structural reciprocity concepts. With the intuitive control panel, the user can move the constraint point’s location through the inserted gumball function, the force direction of the form diagram will be dynamically changed from compression-only to tension and compression combined. Users can also explore and design innovative, efficient spatial structures with changeable boundary conditions and constraints through real-time manipulating both force distribution and geometric form, such as adding the number of supports or subdividing the global equilibrium in the force diagram. Eventually, there is an option to export the satisfying geometry as a suitable format to share with other fabrication tools. As the online educational environment with different types of geometric examples, it is valuable to use graphical approaches to teach the structural form in an exploratory manner.« less
  5. de la Garza, J.M. (Ed.)
    There has been an increasing demand in building information modeling (BIM) for structural analysis. However, model exchange between architectural software and structural analysis software, which is an essential task in a construction project, is not fully interoperable yet. Various studies showed missing information and information inconsistency problems during conversion of models between different software; the lack of foundational methods enabling a seamless BIM interoperability between architectural design and structural analysis is evident. To address this gap and facilitate more use of BIM for structural analysis, the authors develop invariant signatures for architecture, engineering, and construction (AEC) objects and propose a new data-driven method to use invariant signatures for solving practical problems in BIM applications. The invariant signatures and the data-driven method were tested in developing the interoperable BIM support tool for structural analysis through an experiment. Ten models were created/adopted and used in this experiment, including five models for training and five models for testing. An information validation and mapping algorithm was developed based on invariant signatures and training models, which was then evaluated in the testing models. Compared with a manually created gold standard, results showed that the desired structural analysis software inputs were successfully generated using the algorithmmore »with high accuracy. The invariant signatures of AEC objects can therefore be expected to serve as the foundation of seamless BIM interoperability.« less