Network measurement and monitoring are instrumental to network operations, planning and troubleshooting. However, increasing line rates (100+Gbps), changing measurement targets and metrics, privacy concerns, and policy differences across multiple R&E network domains have introduced tremendous challenges in operating such high-speed heterogeneous networks, understanding the traffic patterns, providing for resource optimization, and locating and resolving network issues. There is strong demand for a flexible, high-performance measurement instrument that can empower network operators to achieve the versatile objectives of effective network management and resource provisioning. In this demonstration, we present AMIS: Advanced Measurement Instrument and Services to achieve programmable, flow-granularity and event-driven network measurement, sustain scalable line rates, to meet evolving measurement objectives and to derive knowledge for network advancement.
more »
« less
Edison: Event-driven Distributed System of Network Measurement
Network measurement is critical in network management such as performance monitoring, diagnosis, and traffic engineering. However, conventional network measurement software tools are inadequate in high-speed network at scale. They also lack an event-driven mechanism to automate complex network measurement process. In this paper, we present Edi-son which contains an high performance measurement backend (Ares) to collect flow metrics, driven with an expressive frontend (Equery) to enable the composition of complex measurement tasks. Finally, we evaluate the effectiveness of our Edison framework on a distributed measurement platform deployed for 100Gbps international research networks.
more »
« less
- PAR ID:
- 10104756
- Date Published:
- Journal Name:
- 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Typical cybersecurity solutions emphasize on achieving defense functionalities. However, execution efficiency and scalability are equally important, especially for real-world deployment. Straightforward mappings of cybersecurity applications onto HPC platforms may significantly underutilize the HPC devices’ capacities. On the other hand, the sophisticated implementations are quite difficult: they require both in-depth understandings of cybersecurity domain-specific characteristics and HPC architecture and system model. In our work, we investigate three sub-areas in cybersecurity, including mobile software security, network security, and system security. They have the following performance issues, respectively: 1) The flow- and context-sensitive static analysis for the large and complex Android APKs are incredibly time-consuming. Existing CPU-only frameworks/tools have to set a timeout threshold to cease the program analysis to trade the precision for performance. 2) Network intrusion detection systems (NIDS) use automata processing as its searching core and requires line-speed processing. However, achieving high-speed automata processing is exceptionally difficult in both algorithm and implementation aspects. 3) It is unclear how the cache configurations impact time-driven cache side-channel attacks’ performance. This question remains open because it is difficult to conduct comparative measurement to study the impacts. In this dissertation, we demonstrate how application-specific characteristics can be leveraged to optimize implementations on various types of HPC for faster and more scalable cybersecurity executions. For example, we present a new GPU-assisted framework and a collection of optimization strategies for fast Android static data-flow analysis that achieve up to 128X speedups against the plain GPU implementation. For network intrusion detection systems (IDS), we design and implement an algorithm capable of eliminating the state explosion in out-of-order packet situations, which reduces up to 400X of the memory overhead. We also present tools for improving the usability of Micron’s Automata Processor. To study the cache configurations’ impact on time-driven cache side-channel attacks’ performance, we design an approach to conducting comparative measurement. We propose a quantifiable success rate metric to measure the performance of time-driven cache attacks and utilize the GEM5 platform to emulate the configurable cache.more » « less
-
This paper studies how to provision edge computing and network resources for complex microservice-based applications (MSAs) in face of uncertain and dynamic geo-distributed demands. The complex inter-dependencies between distributed microservice components make load balancing for MSAs extremely challenging, and the dynamic geo-distributed demands exacerbate load imbalance and consequently congestion and performance loss. In this paper, we develop an edge resource provisioning model that accurately captures the inter-dependencies between microservices and their impact on load balancing across both computation and communication resources. We also propose a robust formulation that employs explicit risk estimation and optimization to hedge against potential worst-case load fluctuations, with controlled robustness-resource trade-off. Utilizing a data-driven approach, we provide a solution that provides risk estimation with measurement data of past load geo-distributions. Simulations with real-world datasets have validated that our solution provides the important robustness crucially needed in MSAs, and performs superiorly compared to baselines that neglect either network or inter-dependency constraints.more » « less
-
In the area of network monitoring and measurement a number of good tools are already available. However, most mature tools do not account for changes in network management brought about through Software Defined Networking (SDN). New tools developed to address the SDN paradigm often lack both observation scope and performance scale to support distributed management of accelerated measurement devices, high-throughput network processing, and distributed network function monitoring. In this paper we present an approach to distributed network monitoring and management using an agent-based edge computing framework. In addition, we provide a number of real-world examples where this system has been put into practice.more » « less
-
Abstract Electric vehicles (EVs) are considered an environmentally friendly option compared to conventional vehicles. As the most critical module in EVs, batteries are complex electrochemical components with nonlinear behavior. On-board battery system performance is also affected by complicated operating environments. Real-time EV battery in-service status prediction is tricky but vital to enable fault diagnosis and prevent dangerous occurrences. Data-driven models with advantages in time-series analysis can be used to capture the degradation pattern from data about certain performance indicators and predict the battery states. The transformer model can capture long-range dependencies efficiently using a multi-head attention block mechanism. This paper presents the implementation of a standard transformer and an encoder-only transformer neural network to predict EV battery state of health (SOH). Based on the analysis of the lithium-ion battery from the NASA Prognostics Center of Excellence website's publicly accessible dataset, 28 features related to the charge and discharge measurement data are extracted. The features are screened using Pearson correlation coefficients. The results show that the filtered features can improve the model's accuracy and computational efficiency. The proposed standard transformer shows good performance in the SOH prediction.more » « less
An official website of the United States government

