Abstract Galactic cosmic rays (CRs) are accelerated at the forward shocks of supernova remnants (SNRs) via diffusive shock acceleration (DSA), an efficient acceleration mechanism that predicts power-law energy distributions of CRs. However, observations of nonthermal SNR emission imply CR energy distributions that are generally steeper than E −2 , the standard DSA prediction. Recent results from kinetic hybrid simulations suggest that such steep spectra may arise from the drift of magnetic structures with respect to the thermal plasma downstream of the shock. Using a semi-analytic model of nonlinear DSA, we investigate the implications that these results have on the phenomenology of a wide range of SNRs. By accounting for the motion of magnetic structures in the downstream, we produce CR energy distributions that are substantially steeper than E −2 and consistent with observations. Our formalism reproduces both modestly steep spectra of Galactic SNRs (∝ E −2.2 ) and the very steep spectra of young radio supernovae (∝ E −3 ).
more »
« less
Diffusive shock re-acceleration
We have performed two-dimensional hybrid simulations of non-relativistic collisionless shocks in the presence of pre-existing energetic particles (‘seeds’); such a study applies, for instance, to the re-acceleration of galactic cosmic rays (CRs) in supernova remnant (SNR) shocks and solar wind energetic particles in heliospheric shocks. Energetic particles can be effectively reflected and accelerated regardless of shock inclination via a process that we call diffusive shock re-acceleration. We find that re-accelerated seeds can drive the streaming instability in the shock upstream and produce effective magnetic field amplification. This can eventually trigger the injection of thermal protons even at oblique shocks that ordinarily cannot inject thermal particles. We characterize the current in reflected seeds, finding that it tends to a universal value $$J\simeq en_{\text{CR}}v_{\text{sh}}$$ , where $$en_{\text{CR}}$$ is the seed charge density and $$v_{\text{sh}}$$ is the shock velocity. When applying our results to SNRs, we find that the re-acceleration of galactic CRs can excite the Bell instability to nonlinear levels in less than $${\sim}10~\text{yr}$$ , thereby providing a minimum level of magnetic field amplification for any SNR shock. Finally, we discuss the relevance of diffusive shock re-acceleration also for other environments, such as heliospheric shocks, galactic superbubbles and clusters of galaxies.
more »
« less
- Award ID(s):
- 1814708
- PAR ID:
- 10105023
- Date Published:
- Journal Name:
- Journal of Plasma Physics
- Volume:
- 84
- Issue:
- 3
- ISSN:
- 0022-3778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Collisionless shocks tend to send charged particles into the upstream, driving electric currents through the plasma. Using kinetic particle-in-cell simulations, we investigate how the background thermal plasma neutralizes such currents in the upstream of quasi-parallel non-relativistic electron–proton shocks. We observe distinct processes in different regions: the far upstream, the shock precursor, and the shock foot. In the far upstream, the current is carried by nonthermal protons, which drive electrostatic modes and produce suprathermal electrons that move toward upstream infinity. Closer to the shock (in the precursor), both the current density and the momentum flux of the beam increase, which leads to electromagnetic streaming instabilities that contribute to the thermalization of suprathermal electrons. At the shock foot, these electrons are exposed to shock-reflected protons, resulting in a two-stream type instability. We analyze these processes and the resulting heating through particle tracking and controlled simulations. In particular, we show that the instability at the shock foot can make the effective thermal speed of electrons comparable to the drift speed of the reflected protons. These findings are important for understanding both the magnetic field amplification and the processes that may lead to the injection of suprathermal electrons into diffusive shock acceleration.more » « less
-
Abstract The structure of shocks and turbulence are strongly modified during the acceleration of cosmic rays (CRs) at a shock wave. The pressure and the collisionless viscous stress decelerate the incoming thermal gas and thus modify the shock structure. A CR streaming instability ahead of the shock generates the turbulence on which CRs scatter. The turbulent magnetic field in turn determines the CR diffusion coefficient and further affects the CR energy spectrum and pressure distribution. The dissipation of turbulence contributes to heating the thermal gas. Within a multicomponent fluid framework, CRs and thermal gas are treated as fluids and are closely coupled to the turbulence. The system equations comprise the gas dynamic equations, the CR pressure evolution equation, and the turbulence transport equations, and we adopt typical parameters for the hot ionized interstellar medium. It is shown that the shock has no discontinuity but possesses a narrow but smooth transition. The self-generated turbulent magnetic field is much stronger than both the large-scale magnetic field and the preexisting turbulent magnetic field. The resulting CR diffusion coefficient is substantially suppressed and is more than three orders smaller near the shock than it is far upstream. The results are qualitatively consistent with certain observations.more » « less
-
Context. Tycho ’s supernova remnant (SNR) is associated with the historical supernova (SN) event SN 1572 of Type Ia. The explosion occurred in a relatively clean environment, and was visually observed, providing an age estimate. This SNR therefore represents an ideal astrophysical test-bed for the study of cosmic-ray acceleration and related phenomena. A number of studies suggest that shock acceleration with particle feedback and very efficient magnetic-field amplification combined with Alfvénic drift are needed to explain the rather soft radio spectrum and the narrow rims observed in X-rays. Aims. We show that the broadband spectrum of Tycho ’s SNR can alternatively be well explained when accounting for stochastic acceleration as a secondary process. The re-acceleration of particles in the turbulent region immediately downstream of the shock should be efficient enough to impact particle spectra over several decades in energy. The so-called Alfvénic drift and particle feedback on the shock structure are not required in this scenario. Additionally, we investigate whether synchrotron losses or magnetic-field damping play a more profound role in the formation of the non-thermal filaments. Methods. We solved the full particle transport equation in test-particle mode using hydrodynamic simulations of the SNR plasma flow. The background magnetic field was either computed from the induction equation or follows analytic profiles, depending on the model considered. Fast-mode waves in the downstream region provide the diffusion of particles in momentum space. Results. We show that the broadband spectrum of Tycho can be well explained if magnetic-field damping and stochastic re-acceleration of particles are taken into account. Although not as efficient as standard diffusive shock acceleration, stochastic acceleration leaves its imprint on the particle spectra, which is especially notable in the emission at radio wavelengths. We find a lower limit for the post-shock magnetic-field strength ∼330 μ G, implying efficient amplification even for the magnetic-field damping scenario. Magnetic-field damping is necessary for the formation of the filaments in the radio range, while the X-ray filaments are shaped by both the synchrotron losses and magnetic-field damping.more » « less
-
Abstract We investigate the process of diffusive shock acceleration of particles with mass number to charge number ratiosA/Q > 1, e.g., partially ionized heavy ions. To this end, we introduce helium- and carbon-like ions at solar abundances into two-dimensional hybrid (kinetic ions–fluid electrons) simulations of nonrelativistic collisionless shocks. This study yields three main results: (1) Heavy ions are preferentially accelerated compared to hydrogen. For typical solar abundances, the energy transferred to accelerated helium ions is comparable to, or even exceeds, that of hydrogen, thereby enhancing the overall shock acceleration efficiency. (2) Accelerated helium ions contribute to magnetic field amplification, which increases the maximum attainable particle energy and steepens the spectra of accelerated particles. (3) The efficient acceleration of helium significantly enhances the production of hadronicγ-rays and neutrinos, likely dominating the one due to hydrogen. These effects should be taken into account, especially when modeling strong space and astrophysical shocks.more » « less
An official website of the United States government

