skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 22, 2026

Title: Acceleration of Heavy Ions at Nonrelativistic Collisionless Shocks
Abstract We investigate the process of diffusive shock acceleration of particles with mass number to charge number ratiosA/Q > 1, e.g., partially ionized heavy ions. To this end, we introduce helium- and carbon-like ions at solar abundances into two-dimensional hybrid (kinetic ions–fluid electrons) simulations of nonrelativistic collisionless shocks. This study yields three main results: (1) Heavy ions are preferentially accelerated compared to hydrogen. For typical solar abundances, the energy transferred to accelerated helium ions is comparable to, or even exceeds, that of hydrogen, thereby enhancing the overall shock acceleration efficiency. (2) Accelerated helium ions contribute to magnetic field amplification, which increases the maximum attainable particle energy and steepens the spectra of accelerated particles. (3) The efficient acceleration of helium significantly enhances the production of hadronicγ-rays and neutrinos, likely dominating the one due to hydrogen. These effects should be taken into account, especially when modeling strong space and astrophysical shocks.  more » « less
Award ID(s):
2510951 2010240 2308021
PAR ID:
10644911
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
993
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The observed energy spectra of accelerated particles at interplanetary shocks often do not match the diffusive shock acceleration (DSA) theory predictions. In some cases, the particle flux forms a plateau over a wide range of energies, extendingupstream of the shockfor up to seven fluxe-folds before submerging into the background spectrum. Remarkably, at and downstream of the shock we have studied in detail, the flux falls off in energy asϵ−1, consistent with the DSA prediction for a strong shock. The upstream plateau suggests a particle transport mechanism different from those traditionally employed in DSA models. We show that a standard (linear) DSA solution based on a widely accepted diffusive particle transport with an underlying resonant wave–particle interaction is inconsistent with the plateau in the particle flux. To resolve this contradiction, we modify the DSA theory in two ways. First, we include a dependence of the particle diffusivityκon the particle fluxF(nonlinear particle transport). Second, we invoke short-scale magnetic perturbations that are self-consistently generated by, but not resonant with, accelerated particles. They lead to the particle diffusivity increasing with the particle energy as ∝ϵ3/2that simultaneously decreases with the particle flux as 1/F. The combination of these two trends results in the flat spectrum upstream. We speculate that nonmonotonic spatial variations of the upstream spectrum, apart from being time-dependent, may also result from non-DSA acceleration mechanisms at work upstream, such as stochastic Fermi or magnetic pumping acceleration. 
    more » « less
  2. We have performed two-dimensional hybrid simulations of non-relativistic collisionless shocks in the presence of pre-existing energetic particles (‘seeds’); such a study applies, for instance, to the re-acceleration of galactic cosmic rays (CRs) in supernova remnant (SNR) shocks and solar wind energetic particles in heliospheric shocks. Energetic particles can be effectively reflected and accelerated regardless of shock inclination via a process that we call diffusive shock re-acceleration. We find that re-accelerated seeds can drive the streaming instability in the shock upstream and produce effective magnetic field amplification. This can eventually trigger the injection of thermal protons even at oblique shocks that ordinarily cannot inject thermal particles. We characterize the current in reflected seeds, finding that it tends to a universal value $$J\simeq en_{\text{CR}}v_{\text{sh}}$$ , where $$en_{\text{CR}}$$ is the seed charge density and $$v_{\text{sh}}$$ is the shock velocity. When applying our results to SNRs, we find that the re-acceleration of galactic CRs can excite the Bell instability to nonlinear levels in less than $${\sim}10~\text{yr}$$ , thereby providing a minimum level of magnetic field amplification for any SNR shock. Finally, we discuss the relevance of diffusive shock re-acceleration also for other environments, such as heliospheric shocks, galactic superbubbles and clusters of galaxies. 
    more » « less
  3. Large solar eruptions are often associated with long-duration γ-ray emission extending well above 100 MeV. While this phenomenon is known to be caused by high-energy ions interacting with the solar atmosphere, the underlying dominant acceleration process remains under debate. Potential mechanisms include continuous acceleration of particles trapped within large coronal loops or acceleration at coronal mass ejection (CME)-driven shocks, with subsequent back-propagation toward the Sun. As a test of the latter scenario, previous studies have explored the relationship between the inferred particle population producing the high-energy γ-rays and the population of solar energetic particles (SEPs) measured in situ. However, given the significant limitations on available observations, these estimates unavoidably rely on a number of assumptions. In an effort to better constrain theories of the γ-ray emission origin, we reexamine the calculation uncertainties and how they influence the comparison of these two proton populations. We show that, even accounting for conservative assumptions related to the γ-ray flare, SEP event, and interplanetary scattering modeling, their statistical relationship is only poorly/moderately significant. However, though the level of correlation is of interest, it does not provide conclusive evidence for or against a causal connection. The main result of this investigation is that the fraction of the shock-accelerated protons required to account for the γ-ray observations is >20%–40% for six of the 14 eruptions analyzed. Such high values argue against current CME-shock origin models, predicting a <2% back-precipitation; hence, the computed number of high-energy SEPs appears to be greatly insufficient to sustain the measured γ-ray emission. 
    more » « less
  4. Abstract The acceleration of charged particles by interplanetary shocks (IPs) can drain a nonnegligible fraction of the plasma pressure. In this study, we have selected 17 IPs observed in situ at 1 au by the Advanced Composition Explorer and the Wind spacecraft, and 1 shock at 0.8 au observed by Parker Solar Probe. We have calculated the time-dependent partial pressure of suprathermal and energetic particles (smaller and greater than 50 keV for protons and 30 keV for electrons, respectively) in both the upstream and downstream regions. The particle fluxes were averaged for 1 hr before and 1 hr after the shock time to remove short timescale effects. Using the MHD Rankine–Hugoniot jump conditions, we find that the fraction of the total upstream energy flux transferred to suprathermal and energetic downstream particles is typically ≲16%, in agreement with previous observations and simulations. Notably, by accounting for errors on all measured shock parameters, we have found that for any given fast magnetosonic Mach number,Mf< 7, the angle between the shock normal and average upstream magnetic field,θBn, is not correlated with the energetic particle pressure; in particular, the partial pressure of energized particles does not decrease forθBn≳ 45°. The downstream electron-to-proton energy ratio in the range ≳ 140 eV for electrons and ≳ 70 keV for protons exceeds the expected ∼1% and nears equipartition (>0.1) for the Wind events. 
    more » « less
  5. Abstract Shock waves are sites of intense plasma heating and charged particle acceleration. In collisionless solar wind plasmas, such acceleration is attributed to shock drift or Fermi acceleration but also to wave–particle resonant interactions. We examine the latter for the case of electrons interacting with one of the most commonly observed wave modes in shock environments, the whistler mode. Such waves are particularly intense in dynamic, localized regions upstream of shocks, arising from the kinetic interaction of the shock with solar wind discontinuities. These regions, known as foreshock transients, are also sites of significant electron acceleration by mechanisms not fully understood. Using in situ observations of such transients in the Earth’s foreshock, we demonstrate that intense whistler-mode waves can resonate nonlinearly with >25 eV solar wind electrons and accelerate them to ∼100–500 eV. This acceleration is mostly effective for the 50–250 eV energy range, where the accelerated electron population exhibits a characteristic butterfly pitch-angle distribution consistent with theoretical predictions. Such nonlinear resonant acceleration is very fast, implying that this mechanism may be important for injecting suprathermal electrons of solar wind origin into the shock region, where they can undergo further, efficient shock-drift acceleration to even higher energies. 
    more » « less