skip to main content


Title: A Spatially Detailed and Economically Complete Blue Water Footprint of the United States
This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the U.S. Energy Information Administration (EIA), the U.S. Department of Transportation (USDOT), the U.S. Department of Energy (USDOE), and the U.S. Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the U.S. water footprint (F) and in the observed pattern of virtual water flows. The median water footprint (FCUMed) of the U.S. is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (F'CUMed) of the U.S. is 589 m3 capita−1 (F'Withdrawal: 1298 m3 capita−1; F'CUMax: 720 m3 capita−1; F'CUMin: 198 m3 capita−1). The U.S. hydro-economic network is centered on cities and is dominated by the local and regional scales. Approximately (58 %) of U.S. water consumption is for the direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total U.S. water footprint, and is dominated by irrigated agriculture in the Western U.S. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 % to over 99 % depending on location. Harmonized region-specific, economic sector-specific consumption coefficients are necessary to reduce water footprint uncertainties and to better understand the human economy's water use impact on the hydrosphere.  more » « less
Award ID(s):
1639529
NSF-PAR ID:
10105095
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Hydrology and Earth System Sciences Discussions
ISSN:
1812-2116
Page Range / eLocation ID:
1 to 54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Triplet excited states of organic matter are formed when colored organicmatter (i.e., brown carbon) absorbs light. While these “triplets” can beimportant photooxidants in atmospheric drops and particles (e.g., theyrapidly oxidize phenols), very little is known about their reactivity towardmany classes of organic compounds in the atmosphere. Here we measure thebimolecular rate constants of the triplet excited state of benzophenone(3BP), a model species, with 17 water-solubleC3C6 alkenes that have either been found in theatmosphere or are reasonable surrogates for identified species. Measured rateconstants (kALK+3BP) vary by a factor of 30 and are in therange of (0.24–7.5) ×109 M−1 s−1. Biogenic alkenesfound in the atmosphere – e.g., cis-3-hexen-1-ol, cis-3-hexenyl acetate, andmethyl jasmonate – react rapidly, with rate constants above 1×109 M−1 s−1. Rate constants depend on alkene characteristicssuch as the location of the double bond, stereochemistry, and alkylsubstitution on the double bond. There is a reasonable correlation betweenkALK+3BP and the calculated one-electron oxidation potential(OP) of the alkenes (R2=0.58); in contrast, rate constants are notcorrelated with bond dissociation enthalpies, bond dissociation freeenergies, or computed energy barriers for hydrogen abstraction. Using the OPrelationship, we estimate aqueous rate constants for a number of unsaturatedisoprene and limonene oxidation products with 3BP: values are inthe range of (0.080–1.7) ×109 M−1 s−1, withgenerally faster values for limonene products. Rate constants with lessreactive triplets, which are probably more environmentally relevant, arelikely roughly 25 times slower. Using our predicted rate constants, alongwith values for other reactions from the literature, we conclude thattriplets are probably minor oxidants for isoprene- and limonene-relatedcompounds in cloudy or foggy atmospheres, except in cases in which the tripletsare very reactive.

     
    more » « less
  2. Abstract

    Phosphorus (P) and nitrogen (N) are essential nutrients for food production but their excess use in agriculture can have major social costs, particularly related to water quality degradation. Nutrient footprint approaches estimate N and P release to the environment through food production and waste management and enable linking these emissions to particular consumption patterns. Following an established method for quantifying a consumer-oriented N footprint for the United States (U.S.), we calculate an analogous P footprint and assess the N:P ratio across different stages of food production and consumption. Circa 2012, the average consumer’s P footprint was 4.4 kg P capita−1yr−1compared to 22.4 kg N capita−1yr−1for the food portion of the N footprint. Animal products have the largest contribution to both footprints, comprising >70% of the average per capita N and P footprints. The N:P ratio of environmental release based on virtual nutrient factors (kilograms N or P per kilogram of food consumed) varies considerably across food groups and stages. The overall N:P ratio of the footprints was lower (5.2 by mass) than for that of U.S. food consumption (8.6), reinforcing our finding that P is managed less efficiently than N in food production systems but more efficiently removed from wastewater. While strategies like reducing meat consumption will effectively reduce both N and P footprints by decreasing overall synthetic fertilizer nutrient demands, consideration of how food production and waste treatment differentially affect N and P releases to the environment can also inform eutrophication management.

     
    more » « less
  3. Abstract. The formation of secondary organic aerosol (SOA) from the oxidation of β-pinene via nitrate radicals is investigated in the Georgia Tech Environmental Chamber (GTEC) facility. Aerosol yields are determined for experiments performed under both dry (relative humidity (RH) < 2 %) and humid (RH = 50 % and RH = 70 %) conditions. To probe the effects of peroxy radical (RO2) fate on aerosol formation, "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are performed. Gas-phase organic nitrate species (with molecular weights of 215, 229, 231, and 245 amu, which likely correspond to molecular formulas of C10H17NO4, C10H15NO5, C10H17NO5, and C10H15NO6, respectively) are detected by chemical ionization mass spectrometry (CIMS) and their formation mechanisms are proposed. The NO+ (at m/z 30) and NO2+ (at m/z 46) ions contribute about 11 % to the combined organics and nitrate signals in the typical aerosol mass spectrum, with the NO+ : NO2+ ratio ranging from 4.8 to 10.2 in all experiments conducted. The SOA yields in the "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are comparable. For a wide range of organic mass loadings (5.1–216.1 μg m&minus;3), the aerosol mass yield is calculated to be 27.0–104.1 %. Although humidity does not appear to affect SOA yields, there is evidence of particle-phase hydrolysis of organic nitrates, which are estimated to compose 45–74 % of the organic aerosol. The extent of organic nitrate hydrolysis is significantly lower than that observed in previous studies on photooxidation of volatile organic compounds in the presence of NOx. It is estimated that about 90 and 10 % of the organic nitrates formed from the β-pinene+NO3 reaction are primary organic nitrates and tertiary organic nitrates, respectively. While the primary organic nitrates do not appear to hydrolyze, the tertiary organic nitrates undergo hydrolysis with a lifetime of 3–4.5 h. Results from this laboratory chamber study provide the fundamental data to evaluate the contributions of monoterpene + NO3 reaction to ambient organic aerosol measured in the southeastern United States, including the Southern Oxidant and Aerosol Study (SOAS) and the Southeastern Center for Air Pollution and Epidemiology (SCAPE) study.

     
    more » « less
  4. Abstract

    Virtual water flows are used to map the indirect water consumption connections implied by the supply chain of a city, region, or country. This information can be used to manage supply chains to achieve environmental policy objectives and mitigate environmental risks to critical supply chains. A limitation of prior work is that these flows are typically analyzed using monolayer networks, which ignores crucial intersectoral or interlayer couplings. Here, we use a multilayer network to account for such couplings when analyzing blue virtual water flows in the United States. Our multilayer network consists of 115 different regions (nodes), covering the entire conterminous United States; 41 coupled economic sectors (layers); and ∼2 × 107possible links. To analyze the multilayer network, we focus on three fundamental network properties: topological connectivity, mesoscale structure, and node centrality. The network has a high connectivity, with each node being on average connected to roughly 2/3 of the network's nodes. Interlayer flows are a major driver of connectivity, representing ∼54% of all the network's connections. Five different groups of tightly connected nodes (communities) characterize the network. Each community represents a preferred spatial mode of long‐range virtual water interaction within the United States. We find that large (populous) cities have a stronger influence than small ones on network functioning because they attract and recirculate more virtual water through their supply chains. Our results also highlight differences between the multilayer and monolayer virtual water network, which overall show that the former provides a more realistic representation of virtual water flows.

     
    more » « less
  5. Abstract. Urbanization and deforestation have important impacts on atmosphericparticulate matter (PM) over Amazonia. This study presents observations andanalysis of PM1 concentration, composition, and opticalproperties in central Amazonia during the dry season, focusing on theanthropogenic impacts. The primary study site was located 70&thinsp;km downwind ofManaus, a city of over 2 million people in Brazil, as part of theGoAmazon2014/5 experiment. A high-resolution time-of-flight aerosol massspectrometer (AMS) provided data on PM1 composition, and aethalometermeasurements were used to derive the absorption coefficient babs,BrC ofbrown carbon (BrC) at 370&thinsp;nm. Non-refractory PM1 mass concentrationsaveraged 12.2&thinsp;µg&thinsp;m−3 at the primary study site, dominated byorganics (83&thinsp;%), followed by sulfate (11&thinsp;%). A decrease inbabs,BrC was observed as the mass concentration of nitrogen-containingorganic compounds decreased and the organic PM1 O:C ratio increased,suggesting atmospheric bleaching of the BrC components. The organic PM1was separated into six different classes by positive-matrix factorization(PMF), and the mass absorption efficiency Eabs associated with eachfactor was estimated through multivariate linear regression ofbabs,BrC on the factor loadings. The largest Eabs values wereassociated with urban (2.04±0.14&thinsp;m2&thinsp;g−1) and biomass-burning(0.82±0.04 to 1.50±0.07&thinsp;m2&thinsp;g−1) sources. Together, these sources contributed at least 80&thinsp;% ofbabs,BrC while accounting for 30&thinsp;% to 40&thinsp;% of the organic PM1 massconcentration. In addition, a comparison of organic PM1 compositionbetween wet and dry seasons revealed that only part of the 9-foldincrease in mass concentration between the seasons can be attributed tobiomass burning. Biomass-burning factor loadings increased by 30-fold,elevating its relative contribution to organic PM1 from about 10&thinsp;% inthe wet season to 30&thinsp;% in the dry season. However, most of the PM1mass (&gt;60&thinsp;%) in both seasons was accounted for by biogenicsecondary organic sources, which in turn showed an 8-fold seasonalincrease in factor loadings. A combination of decreased wet deposition andincreased emissions and oxidant concentrations, as well as a positivefeedback on larger mass concentrations are thought to play a role in theobserved increases. Furthermore, fuzzy c-means clustering identified threeclusters, namely “baseline”, “event”, and “urban” to representdifferent pollution influences during the dry season. The baseline cluster,representing the dry season background, was associated with a mean massconcentration of 9±3&thinsp;µg&thinsp;m−3. This concentration increasedon average by 3&thinsp;µg&thinsp;m−3 for both the urban and the event clusters.The event cluster, representing an increased influence of biomass burningand long-range transport of African volcanic emissions, was characterized byremarkably high sulfate concentrations. The urban cluster, representing theinfluence of Manaus emissions on top of the baseline, was characterized byan organic PM1 composition that differed from the other two clusters.The differences discussed suggest a shift in oxidation pathways as well asan accelerated oxidation cycle due to urban emissions, in agreement withfindings for the wet season.

     
    more » « less