skip to main content


Title: Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season

Abstract. Urbanization and deforestation have important impacts on atmosphericparticulate matter (PM) over Amazonia. This study presents observations andanalysis of PM1 concentration, composition, and opticalproperties in central Amazonia during the dry season, focusing on theanthropogenic impacts. The primary study site was located 70 km downwind ofManaus, a city of over 2 million people in Brazil, as part of theGoAmazon2014/5 experiment. A high-resolution time-of-flight aerosol massspectrometer (AMS) provided data on PM1 composition, and aethalometermeasurements were used to derive the absorption coefficient babs,BrC ofbrown carbon (BrC) at 370 nm. Non-refractory PM1 mass concentrationsaveraged 12.2 µg m−3 at the primary study site, dominated byorganics (83 %), followed by sulfate (11 %). A decrease inbabs,BrC was observed as the mass concentration of nitrogen-containingorganic compounds decreased and the organic PM1 O:C ratio increased,suggesting atmospheric bleaching of the BrC components. The organic PM1was separated into six different classes by positive-matrix factorization(PMF), and the mass absorption efficiency Eabs associated with eachfactor was estimated through multivariate linear regression ofbabs,BrC on the factor loadings. The largest Eabs values wereassociated with urban (2.04±0.14 m2 g−1) and biomass-burning(0.82±0.04 to 1.50±0.07 m2 g−1) sources. Together, these sources contributed at least 80 % ofbabs,BrC while accounting for 30 % to 40 % of the organic PM1 massconcentration. In addition, a comparison of organic PM1 compositionbetween wet and dry seasons revealed that only part of the 9-foldincrease in mass concentration between the seasons can be attributed tobiomass burning. Biomass-burning factor loadings increased by 30-fold,elevating its relative contribution to organic PM1 from about 10 % inthe wet season to 30 % in the dry season. However, most of the PM1mass (>60 %) in both seasons was accounted for by biogenicsecondary organic sources, which in turn showed an 8-fold seasonalincrease in factor loadings. A combination of decreased wet deposition andincreased emissions and oxidant concentrations, as well as a positivefeedback on larger mass concentrations are thought to play a role in theobserved increases. Furthermore, fuzzy c-means clustering identified threeclusters, namely “baseline”, “event”, and “urban” to representdifferent pollution influences during the dry season. The baseline cluster,representing the dry season background, was associated with a mean massconcentration of 9±3 µg m−3. This concentration increasedon average by 3 µg m−3 for both the urban and the event clusters.The event cluster, representing an increased influence of biomass burningand long-range transport of African volcanic emissions, was characterized byremarkably high sulfate concentrations. The urban cluster, representing theinfluence of Manaus emissions on top of the baseline, was characterized byan organic PM1 composition that differed from the other two clusters.The differences discussed suggest a shift in oxidation pathways as well asan accelerated oxidation cycle due to urban emissions, in agreement withfindings for the wet season.

 
more » « less
Award ID(s):
1822664
NSF-PAR ID:
10107318
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
19
Issue:
12
ISSN:
1680-7324
Page Range / eLocation ID:
7973 to 8001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Airborne and ground-based measurements of aerosol concentrations, chemicalcomposition, and gas-phase precursors were obtained in three valleys innorthern Utah (USA). The measurements were part of the Utah Winter FineParticulate Study (UWFPS) that took place in January–February 2017. Totalaerosol mass concentrations of PM1 were measured from a Twin Otteraircraft, with an aerosol mass spectrometer (AMS). PM1 concentrationsranged from less than 2µgm−3 during clean periods to over100µgm−3 during the most polluted episodes, consistent withPM2.5 total mass concentrations measured concurrently at groundsites. Across the entire region, increases in total aerosol mass above∼2µgm−3 were associated with increases in theammonium nitrate mass fraction, clearly indicating that the highest aerosolmass loadings in the region were predominantly attributable to an increase inammonium nitrate. The chemical composition was regionally homogenous fortotal aerosol mass concentrations above 17.5µgm−3, with 74±5% (average±standard deviation) ammonium nitrate, 18±3%organic material, 6±3% ammonium sulfate, and 2±2%ammonium chloride. Vertical profiles of aerosol mass and volume in the regionshowed variable concentrations with height in the polluted boundary layer.Higher average mass concentrations were observed within the first few hundredmeters above ground level in all three valleys during pollution episodes. Gas-phase measurements of nitric acid (HNO3) and ammonia (NH3) duringthe pollution episodes revealed that in the Cache and Utah valleys, partitioningof inorganic semi-volatiles to the aerosol phase was usually limited by theamount of gas-phase nitric acid, with NH3 being in excess. The inorganicspecies were compared with the ISORROPIA thermodynamic model. Total inorganicaerosol mass concentrations were calculated for various decreases in totalnitrate and total ammonium. For pollution episodes, our simulations of a50% decrease in total nitrate lead to a 46±3% decrease in totalPM1 mass. A simulated 50% decrease in total ammonium leads to a36±17%µgm−3 decrease in total PM1 mass, over the entirearea of the study. Despite some differences among locations, ourresults showed a higher sensitivity to decreasing nitric acid concentrationsand the importance of ammonia at the lowest total nitrate conditions. In theSalt Lake Valley, both HNO3 and NH3 concentrations controlledaerosol formation.

     
    more » « less
  2. Abstract. Field investigations of the properties of heavily melted “rotten” Arcticsea ice were carried out on shorefast and drifting ice off the coast ofUtqiaġvik (formerly Barrow), Alaska, during the melt season. While noformal criteria exist to qualify when ice becomes rotten, the objectiveof this study was to sample melting ice at the point at which its structural andoptical properties are sufficiently advanced beyond the peak of the summerseason. Baseline data on the physical (temperature, salinity, density,microstructure) and optical (light scattering) properties of shorefast icewere recorded in May and June 2015. In July of both 2015 and 2017, smallboats were used to access drifting rotten ice within ∼32 km of Utqiaġvik. Measurements showed that pore space increased as icetemperature increased (−8 to 0 C), ice salinitydecreased (10 to 0 ppt), and bulk density decreased (0.9 to0.6 g cm−3). Changes in pore space were characterized with thin-sectionmicrophotography and X-ray micro-computed tomography in the laboratory. Theseanalyses yielded changes in average brine inclusion number density (whichdecreased from 32 to 0.01 mm−3), mean pore size (whichincreased from 80 µm to 3 mm), and total porosity (increased from0 % to > 45 %) and structural anisotropy (variable, withvalues of generally less than 0.7). Additionally, light-scattering coefficientsof the ice increased from approximately 0.06 to > 0.35 cm−1 as the ice melt progressed. Together, these findings indicate thatthe properties of Arctic sea ice at the end of melt season are significantlydistinct from those of often-studied summertime ice. If such rotten ice wereto become more prevalent in a warmer Arctic with longer melt seasons, thiscould have implications for the exchange of fluid and heat at the oceansurface.

     
    more » « less
  3. Abstract. Triplet excited states of organic matter are formed when colored organicmatter (i.e., brown carbon) absorbs light. While these “triplets” can beimportant photooxidants in atmospheric drops and particles (e.g., theyrapidly oxidize phenols), very little is known about their reactivity towardmany classes of organic compounds in the atmosphere. Here we measure thebimolecular rate constants of the triplet excited state of benzophenone(3BP), a model species, with 17 water-solubleC3C6 alkenes that have either been found in theatmosphere or are reasonable surrogates for identified species. Measured rateconstants (kALK+3BP) vary by a factor of 30 and are in therange of (0.24–7.5) ×109 M−1 s−1. Biogenic alkenesfound in the atmosphere – e.g., cis-3-hexen-1-ol, cis-3-hexenyl acetate, andmethyl jasmonate – react rapidly, with rate constants above 1×109 M−1 s−1. Rate constants depend on alkene characteristicssuch as the location of the double bond, stereochemistry, and alkylsubstitution on the double bond. There is a reasonable correlation betweenkALK+3BP and the calculated one-electron oxidation potential(OP) of the alkenes (R2=0.58); in contrast, rate constants are notcorrelated with bond dissociation enthalpies, bond dissociation freeenergies, or computed energy barriers for hydrogen abstraction. Using the OPrelationship, we estimate aqueous rate constants for a number of unsaturatedisoprene and limonene oxidation products with 3BP: values are inthe range of (0.080–1.7) ×109 M−1 s−1, withgenerally faster values for limonene products. Rate constants with lessreactive triplets, which are probably more environmentally relevant, arelikely roughly 25 times slower. Using our predicted rate constants, alongwith values for other reactions from the literature, we conclude thattriplets are probably minor oxidants for isoprene- and limonene-relatedcompounds in cloudy or foggy atmospheres, except in cases in which the tripletsare very reactive.

     
    more » « less
  4. Abstract. Secondary organic aerosol derived from isopreneepoxydiols (IEPOX-SOA) is thought to contribute the dominant fraction oftotal isoprene SOA, but the current volatility-based lumped SOAparameterizations are not appropriate to represent the reactive uptake ofIEPOX onto acidified aerosols. A full explicit modeling of this chemistryis however computationally expensive owing to the many species and reactionstracked, which makes it difficult to include it in chemistry–climate modelsfor long-term studies. Here we present three simplified parameterizations(version 1.0) for IEPOX-SOA simulation, based on an approximateanalytical/fitting solution of the IEPOX-SOA yield and formation timescale.The yield and timescale can then be directly calculated using the globalmodel fields of oxidants, NO, aerosol pH and other key properties, and drydeposition rates. The advantage of the proposed parameterizations is thatthey do not require the simulation of the intermediates while retaining thekey physicochemical dependencies. We have implemented the newparameterizations into the GEOS-Chem v11-02-rc chemical transport model,which has two empirical treatments for isoprene SOA (the volatility-basis-set, VBS, approach and a fixed 3 % yield parameterization), and comparedall of them to the case with detailed fully explicit chemistry. The bestparameterization (PAR3) captures the global tropospheric burden of IEPOX-SOAand its spatiotemporal distribution (R2=0.94) vs. thosesimulated by the full chemistry, while being more computationally efficient(∼5 times faster), and accurately captures the response tochanges in NOx and SO2 emissions. On the other hand, the constant3 % yield that is now the default in GEOS-Chem deviates strongly (R2=0.66), as does the VBS (R2=0.47, 49 % underestimation), withneither parameterization capturing the response to emission changes. Withthe advent of new mass spectrometry instrumentation, many detailed SOAmechanisms are being developed, which will challenge global and especiallyclimate models with their computational cost. The methods developed in thisstudy can be applied to other SOA pathways, which can allow includingaccurate SOA simulations in climate and global modeling studies in thefuture.

     
    more » « less
  5. Abstract. Chemical ionization massspectrometry (CIMS) instruments routinely detect hundreds of oxidized organic compoundsin the atmosphere. A major limitation of these instruments is the uncertaintyin their sensitivity to many of the detected ions. We describe thedevelopment of a new high-resolution time-of-flight chemical ionization massspectrometer that operates in one of two ionization modes: using eitherammonium ion ligand-switching reactions such as for NH4+ CIMS orproton transfer reactions such as for proton-transfer-reaction massspectrometer (PTR-MS). Switching between the modes can be done within 2 min.The NH4+ CIMS mode of the new instrument has sensitivities of upto 67 000 dcps ppbv−1 (duty-cycle-corrected ion counts per second perpart per billion by volume) and detection limits between 1 and 60 pptv at2σ for a 1 s integration time for numerous oxygenated volatileorganic compounds. We present a mass spectrometric voltage scanning procedurebased on collision-induced dissociation that allows us to determine thestability of ammonium-organic ions detected by the NH4+ CIMS instrument.Using this procedure, we can effectively constrain the sensitivity of theammonia chemical ionization mass spectrometer to a wide range of detectedoxidized volatile organic compounds for which no calibration standards exist.We demonstrate the application of this procedure by quantifying thecomposition of secondary organic aerosols in a series of laboratoryexperiments.

     
    more » « less