skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Width of the Whitehead double of a nontrivial knot
In this paper, we prove that [Formula: see text], where [Formula: see text] is the width of a knot and [Formula: see text] is the Whitehead double of a nontrivial knot [Formula: see text].  more » « less
Award ID(s):
1808794
PAR ID:
10105141
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Knot Theory and Its Ramifications
Volume:
28
Issue:
14
ISSN:
0218-2165
Page Range / eLocation ID:
1950081
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It was previously shown by the first author that every knot in [Formula: see text] is ambient isotopic to one component of a two-component, alternating, hyperbolic link. In this paper, we define the alternating volume of a knot [Formula: see text] to be the minimum volume of any link [Formula: see text] in a natural class of alternating, hyperbolic links such that [Formula: see text] is ambient isotopic to a component of [Formula: see text]. Our main result shows that the alternating volume of a knot is coarsely equivalent to the twist number of a knot. 
    more » « less
  2. The non-orientable 4-genus of a knot [Formula: see text] in [Formula: see text] is defined to be the minimum first Betti number of a non-orientable surface [Formula: see text] smoothly embedded in [Formula: see text] so that [Formula: see text] bounds [Formula: see text]. We will survey the tools used to compute the non-orientable 4-genus, and use various techniques to calculate this invariant for non-alternating 11 crossing knots. We will also view obstructions to a knot bounding a Möbius band given by the double branched cover of [Formula: see text] branched over [Formula: see text]. 
    more » « less
  3. null (Ed.)
    Consider a knot [Formula: see text] in [Formula: see text] with charge uniformly distributed on it. From the standpoint of both physics and knot theory, it is natural to try to understand the critical points of the potential and their behavior. We show the number of critical points of the potential is at least [Formula: see text], where [Formula: see text] is the tunnel number, defined as the smallest number of arcs one must add to [Formula: see text] such that its complement is a handlebody. The result is proven using Morse theory and stable manifold theory. 
    more » « less
  4. In this paper, we study the Riley polynomial of double twist knots with higher genus. Using the root of the Riley polynomial, we compute the range of rational slope [Formula: see text] such that [Formula: see text]-filling of the knot complement has left-orderable fundamental group. Further more, we make a conjecture about left-orderable surgery slopes of two-bridge knots. 
    more » « less
  5. Using region crossing changes, we define a new invariant called the multi-region index of a knot. We prove that the multi-region index of a knot is bounded from above by twice the crossing number of the knot. In addition, we show that the minimum number of generators of the first homology of the double branched cover of [Formula: see text] over the knot is strictly less than the multi-region index. Our proof of this lower bound uses Goeritz matrices. 
    more » « less