skip to main content


Title: Dynamic MRI Reconstruction with Motion-Guided Network
Temporal correlation in dynamic magnetic resonance imaging (MRI), such as cardiac MRI, is in- formative and important to understand motion mechanisms of body regions. Modeling such in- formation into the MRI reconstruction process produces temporally coherent image sequence and reduces imaging artifacts and blurring. However, existing deep learning based approaches neglect motion information during the reconstruction procedure, while traditional motion-guided methods are hindered by heuristic parameter tuning and long inference time. We propose a novel dynamic MRI reconstruction approach called MODRN that unitizes deep neural networks with motion in- formation to improve reconstruction quality. The central idea is to decompose the motion-guided optimization problem of dynamic MRI reconstruction into three components: dynamic reconstruc- tion, motion estimation and motion compensation. Extensive experiments have demonstrated the effectiveness of our proposed approach compared to other state-of-the-art approaches.  more » « less
Award ID(s):
1747778
NSF-PAR ID:
10105311
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose

    To develop a strategy for training a physics‐guided MRI reconstruction neural network without a database of fully sampled data sets.

    Methods

    Self‐supervised learning via data undersampling (SSDU) for physics‐guided deep learning reconstruction partitions available measurements into two disjoint sets, one of which is used in the data consistency (DC) units in the unrolled network and the other is used to define the loss for training. The proposed training without fully sampled data is compared with fully supervised training with ground‐truth data, as well as conventional compressed‐sensing and parallel imaging methods using the publicly available fastMRI knee database. The same physics‐guided neural network is used for both proposed SSDU and supervised training. The SSDU training is also applied to prospectively two‐fold accelerated high‐resolution brain data sets at different acceleration rates, and compared with parallel imaging.

    Results

    Results on five different knee sequences at an acceleration rate of 4 shows that the proposed self‐supervised approach performs closely with supervised learning, while significantly outperforming conventional compressed‐sensing and parallel imaging, as characterized by quantitative metrics and a clinical reader study. The results on prospectively subsampled brain data sets, in which supervised learning cannot be used due to lack of ground‐truth reference, show that the proposed self‐supervised approach successfully performs reconstruction at high acceleration rates (4, 6, and 8). Image readings indicate improved visual reconstruction quality with the proposed approach compared with parallel imaging at acquisition acceleration.

    Conclusion

    The proposed SSDU approach allows training of physics‐guided deep learning MRI reconstruction without fully sampled data, while achieving comparable results with supervised deep learning MRI trained on fully sampled data.

     
    more » « less
  2. Self‐supervised learning has shown great promise because of its ability to train deep learning (DL) magnetic resonance imaging (MRI) reconstruction methods without fully sampled data. Current self‐supervised learning methods for physics‐guided reconstruction networks split acquired undersampled data into two disjoint sets, where one is used for data consistency (DC) in the unrolled network, while the other is used to define the training loss. In this study, we propose an improved self‐supervised learning strategy that more efficiently uses the acquired data to train a physics‐guided reconstruction network without a database of fully sampled data. The proposed multi‐mask self‐supervised learning via data undersampling (SSDU) applies a holdout masking operation on the acquired measurements to split them into multiple pairs of disjoint sets for each training sample, while using one of these pairs for DC units and the other for defining loss, thereby more efficiently using the undersampled data. Multi‐mask SSDU is applied on fully sampled 3D knee and prospectively undersampled 3D brain MRI datasets, for various acceleration rates and patterns, and compared with the parallel imaging method, CG‐SENSE, and single‐mask SSDU DL‐MRI, as well as supervised DL‐MRI when fully sampled data are available. The results on knee MRI show that the proposed multi‐mask SSDU outperforms SSDU and performs as well as supervised DL‐MRI. A clinical reader study further ranks the multi‐mask SSDU higher than supervised DL‐MRI in terms of signal‐to‐noise ratio and aliasing artifacts. Results on brain MRI show that multi‐mask SSDU achieves better reconstruction quality compared with SSDU. The reader study demonstrates that multi‐mask SSDU at R = 8 significantly improves reconstruction compared with single‐mask SSDU at R = 8, as well as CG‐SENSE at R = 2.

     
    more » « less
  3. Computational image reconstruction algorithms generally produce a single image without any measure of uncertainty or confidence. Regularized Maximum Likelihood (RML) and feed-forward deep learning approaches for inverse problems typically focus on recovering a point estimate. This is a serious limitation when working with under-determined imaging systems, where it is conceivable that multiple image modes would be consistent with the measured data. Characterizing the space of probable images that explain the observational data is therefore crucial. In this paper, we propose a variational deep probabilistic imaging approach to quantify reconstruction uncertainty. Deep Probabilistic Imaging (DPI) employs an untrained deep generative model to estimate a posterior distribution of an unobserved image. This approach does not require any training data; instead, it optimizes the weights of a neural network to generate image samples that fit a particular measurement dataset. Once the network weights have been learned, the posterior distribution can be efficiently sampled. We demonstrate this approach in the context of interferometric radio imaging, which is used for black hole imaging with the Event Horizon Telescope, and compressed sensing Magnetic Resonance Imaging (MRI). 
    more » « less
  4. Purpose

    To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data.

    Theory

    Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels.

    Methods

    The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets.

    Results

    Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates.

    Conclusion

    The RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.

     
    more » « less
  5. Abstract Background

    Magnetic resonance imaging (MRI) has unique advantages for guiding interventions, but the narrow space is a major challenge. This study evaluates the feasibility of a remote‐controlled hydrostatic actuator system for MRI‐guided targeted needle placement.

    Methods

    The effects of the hydrostatic actuator system on MR image quality were evaluated. Using a reference step‐and‐shoot method (SS) and the proposed actuator‐assisted method (AA), two operators performed MRI‐guided needle placement in targets (n = 12) in a motion phantom.

    Results

    The hydrostatic actuator system exhibited negligible impact on MR image quality. In dynamic targets, AA was significantly more accurate and precise than SS, with mean ± SD needle‐to‐target error of 1.8 ± 1.0 mm (operator 1) and 1.3 ± 0.5 mm (operator 2). AA reduced the insertion time by 50% to 80% and total procedure time by 25%, compared to SS.

    Conclusions

    The proposed hydrostatic actuator system may improve accuracy and reduce procedure time for MRI‐guided targeted needle placement during motion.

     
    more » « less