skip to main content


Title: Patterns of local and global redox variability during the Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) recorded in carbonates and shales from central Italy
Abstract

Careful evaluation of the local geochemical conditions in past marine settings can provide a window to the average redox state of the global ocean during episodes of extensive organic carbon deposition. These comparisons aid in identifying the interplay between climate and biotic feedbacks contributing to and resulting from these events. Well‐documented examples are known from the Mesozoic Era, which is characterized by episodes of widespread organic carbon deposition known as Oceanic Anoxic Events. This organic carbon burial typically leads to coeval positive carbon‐isotope excursions. Geochemical data are presented here for several palaeoredox proxies (Cr/Ti, V, Mo, Zn, Mn, Fe speciation, I/Ca and sulphur isotopes) from a section exposed at Furlo in the Marche–Umbrian Apennines of Italy that spans the Cenomanian–Turonian boundary. Here, Oceanic Anoxic Event 2 is represented by aca1 m thick radiolarian‐rich millimetre‐laminated organic‐rich shale known locally as the Bonarelli Level. Iron speciation data for thin organic‐rich intervals observed below the Bonarelli Level imply a local redox shift going into the Oceanic Anoxic Event, with ferruginous conditions (i.e. anoxic with dissolved ferrous iron) transiently developed prior to the event and euxinia (i.e. anoxic and sulphidic bottom waters) throughout the event itself. Pre‐Oceanic Anoxic Event enrichments of elements sensitive to anoxic water columns were due to initial development of locally ferruginous bottom waters as a precursor to the event. However, the greater global expanse of dysoxic to euxinic conditions during the Oceanic Anoxic Event greatly reduced redox‐sensitive trace‐metal concentrations in seawater. Pyrite sulphur isotopes document a positive excursion during the Oceanic Anoxic Event. Carbonate I/Ca ratios were generally low, suggesting locally reduced bottom‐water oxygen conditions preceding the event and relatively increased oxygen concentrations post‐event. Combined, the Furlo geochemical data suggest a redox‐stratified water column with oxic surface waters and a shallow chemocline overlying locally ferruginous bottom waters preceding the event, globally widespread euxinic bottom waters during the Oceanic Anoxic Event, followed by chemocline shallowing but sustained local redox stratification following the event.

 
more » « less
NSF-PAR ID:
10105321
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Sedimentology
Volume:
64
Issue:
1
ISSN:
0037-0746
Page Range / eLocation ID:
p. 168-185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Despite a surge of recent work, the evolution of mid‐Proterozoic oceanic–atmospheric redox remains heavily debated. Constraining the dynamics of Proterozoic redox evolution is essential to determine the role, if any, that anoxia played in protracting the development of eukaryotic diversity. We present a multiproxy suite of high‐resolution geochemical measurements from a drill core capturing the ~1.4 Ga Xiamaling Formation, North China Craton. Specifically, we analyzed major and trace element concentrations, sulfur and molybdenum isotopes, and iron speciation not only to better understand the local redox conditions but also to establish how relevant our data are to understanding the contemporaneous global ocean. Our results suggest that throughout deposition of the Xiamaling Formation, the basin experienced varying degrees of isolation from the global ocean. During deposition of the lower organic‐rich shales (130–85 m depth), the basin was extremely restricted, and the reservoirs of sulfate and trace metals were drawn down almost completely. Above a depth of 85 m, shales were deposited in dominantly euxinic waters that more closely resembled a marine system and thus potentially bear signatures of coeval seawater. In the most highly enriched sample from this upper interval, the concentration of molybdenum is 51 ppm with a δ98Mo value of +1.7‰. Concentrations of Mo and other redox‐sensitive elements in our samples are consistent with a deep ocean that was largely anoxic on a global scale. Our maximum δ98Mo value, in contrast, is high compared to published mid‐Proterozoic data. This high value raises the possibility that the Earth's surface environments were transiently more oxygenated at ~1.4 Ga compared to preceding or postdating times. More broadly, this study demonstrates the importance of integrating all available data when attempting to reconstruct surface O2dynamics based on rocks of any age.

     
    more » « less
  2. null (Ed.)
    The extent to which Paleozoic oceans differed from Neoproterozoic oceans and the causal relationship between biological evolution and changing environmental conditions are heavily debated. Here, we report a nearly continuous record of seafloor redox change from the deep-water upper Cambrian to Middle Devonian Road River Group of Yukon, Canada. Bottom waters were largely anoxic in the Richardson trough during the entirety of Road River Group deposition, while independent evidence from iron speciation and Mo/U ratios show that the biogeochemical nature of anoxia changed through time. Both in Yukon and globally, Ordovician through Early Devonian anoxic waters were broadly ferruginous (nonsulfidic), with a transition toward more euxinic (sulfidic) conditions in the mid–Early Devonian (Pragian), coincident with the early diversification of vascular plants and disappearance of graptolites. This ~80-million-year interval of the Paleozoic characterized by widespread ferruginous bottom waters represents a persistence of Neoproterozoic-like marine redox conditions well into the Phanerozoic. 
    more » « less
  3. null (Ed.)
    Low oxygen conditions in the modern Baltic Sea are exacerbated by human activities; however, anoxic conditions also prevailed naturally over the Holocene. Few studies have characterized the specific paleoredox conditions (manganous, ferruginous, euxinic) and their frequency in southern Baltic sub-basins during these ancient events. Here, we apply a suite of isotope systems (Fe, Mo, S) and associated elemental proxies (e.g., Fe speciation, Mn) to specifically define water column redox regimes through the Baltic Holocene in a sill-proximal to sill-distal transect (Lille Belt, Bornholm Basin, Landsort Deep) using samples collected during the Integrated Ocean Drilling Program Expedition 347. At the sill-proximal Lille Belt, there is evidence for anoxic manganous/ferruginous conditions for most of the cored interval following the transition from the Ancylus Lake to Littorina Sea but with no clear excursion to more reducing or euxinic conditions associated with the Holocene Thermal Maximum (HTM) or Medieval Climate Anomaly (MCA) events. At the sill-distal southern sub-basin, Bornholm Basin, a combination of Fe speciation, pore water Fe, and solid phase Mo concentration and isotope data point to manganous/ferruginous conditions during the Ancylus Lake-to-Littorina Sea transition and HTM but with only brief excursions to intermittently or weakly euxinic conditions during this interval. At the western Baltic Proper sub-basin, Landsort Deep, new Fe and S isotope data bolster previous Mo isotope records and Fe speciation evidence for two distinct anoxic periods but also suggest that sulfide accumulation beyond transient levels was largely restricted to the sediment-water interface. Ultimately, the combined data from all three locations indicate that Fe enrichments typically indicative of euxinia may be best explained by Fe deposition as oxides following events likely analogous to the periodic incursions of oxygenated North Sea waters observed today, with subsequent pyrite formation in sulfidic pore waters. Additionally, the Mo isotope data from multiple Baltic Sea southern basins argue against restricted and widespread euxinic conditions, as has been demonstrated in the Baltic Proper and Bothnian Sea during the HTM or MCA. Instead, similar to today, each past Baltic anoxic event is characterized by redox conditions that become progressively more reducing with increasing distance from the sill. 
    more » « less
  4. Abstract

    By about 2.0 billion years ago (Ga), there is evidence for a period best known for its extended, apparent geochemical stability expressed famously in the carbonate–carbon isotope data. Despite the first appearance and early innovation among eukaryotic organisms, this period is also known for a rarity of eukaryotic fossils and an absence of organic biomarker fingerprints for those organisms, suggesting low diversity and relatively small populations compared to the Neoproterozoic era. Nevertheless, the search for diagnostic biomarkers has not been performed with guidance from paleoenvironmental redox constrains from inorganic geochemistry that should reveal the facies that were most likely hospitable to these organisms. Siltstones and shales obtained from drill core of the ca. 1.3–1.4 Ga Roper Group from the McArthur Basin of northern Australia provide one of our best windows into the mid‐Proterozoic redox landscape. The group is well dated and minimally metamorphosed (ofoil windowmaturity), and previous geochemical data suggest a relatively strong connection to the open ocean compared to other mid‐Proterozoic records. Here, we present one of the first integrated investigations of Mesoproterozoic biomarker records performed in parallel with established inorganic redox proxy indicators. Results reveal a temporally variable paleoredox structure through the Velkerri Formation as gauged from iron mineral speciation and trace‐metal geochemistry, vacillating between oxic and anoxic. Our combined lipid biomarker and inorganic geochemical records indicate at least episodic euxinic conditions sustained predominantly below the photic zone during the deposition of organic‐rich shales found in the middle Velkerri Formation. The most striking result is an absence of eukaryotic steranes (4‐desmethylsteranes) and only traces of gammacerane in some samples—despite our search across oxic, as well as anoxic, facies that should favor eukaryotic habitability and in low maturity rocks that allow the preservation of biomarker alkanes. The dearth of Mesoproterozoic eukaryotic sterane biomarkers, even within the more oxic facies, is somewhat surprising but suggests that controls such as the long‐term nutrient balance and other environmental factors may have throttled the abundances and diversity of early eukaryotic life relative to bacteria within marine microbial communities. Given that molecular clocks predict that sterol synthesis evolved early in eukaryotic history, and (bacterial) fossil steroids have been found previously in 1.64 Ga rocks, then a very low environmental abundance of eukaryotes relative to bacteria is our preferred explanation for the lack of regular steranes and only traces of gammacerane in a few samples. It is also possible that early eukaryotes adapted to Mesoproterozoic marine environments did not make abundant steroid lipids or tetrahymanol in their cell membranes.

     
    more » « less
  5. Abstract

    The later Cambrian Steptoean Positive Carbon Isotope Excursion (SPICE) event was an episode marked by pronounced changes to the global biogeochemical cycles of carbon and sulfur and significant extinctions on several paleocontinents including Laurentia (North America). While the exact cause(s) of these events remains debated, various lines of evidence suggest an increase in the areal extent of anoxia at the seafloor was a likely feature. Here, we explore whether changes in local oxygenation accompanied the onset of theSPICEin southern Laurentia using cores of the Nolichucky and Eau Claire Formations from Ohio and Kentucky,USA, that represent a transect into the Rome Trough/Conasauga intrashelf basin. At our study locations, the initial positive δ13C shift of theSPICEoccurs in conjunction with increases in the abundance and δ34S of sedimentary pyrite. Further local redox conditions, tracked using iron speciation analysis, indicate anoxic conditions developed at the two proximal locations after the start of the paired isotopic excursions. However, the location near the basin center shows no indication for anoxia before or during the onset of theSPICE. While this signal may reflect the structure of local redox conditions within the basin, with the development of anoxia limited to the basin margins, we argue that authigenic iron enrichments were muted by sedimentary dilution and/or the enhanced authigenesis of iron‐bearing sheet silicates near the basin center, masking the signal for anoxia there. Regardless of the areal extent of anoxia within the basin, in either scenario the timing of the development of anoxic bottom waters was concurrent with local faunal turnover, features broadly consistent with a global expansion of anoxia playing a role in driving the isotopic trends and extinctions observed during the event.

     
    more » « less