skip to main content


Title: Enhanced Néel temperature in EuSnP under pressure
We present the combined results of single crystal X-ray diffraction, physical properties characterization, and theoretical assessment of EuSnP under high pressure. Single crystals of EuSnP prepared using Sn self-flux crystallize in the tetragonal NbCrN-type crystal structure (S.G. P 4/ nmm ) at ambient pressure. Previous studies have shown that for Eu ions, seven unpaired electrons impart a 2+ oxidation state. Assuming the oxidation states of Eu to be +2 and P to be −3, each Sn will donate one electron, with one p valence electron left for forming a weak Sn–Sn bond. According to the high-pressure single crystal X-ray diffraction measurements, no structural phase transition was observed up to ∼6.2 GPa. Temperature-dependent resistivity measurements up to 2.15 GPa on single crystals indicate that the phase-transition temperature occurring at the Néel temperature ( T N ) is significantly enhanced under high pressure. The robust crystallography and enhanced antiferromagnetic transition temperatures can be rationalized by the electronic structure calculations and chemical bonding analysis. The increasing Eu–P bonding interaction is consistent with the lattice parameter changing and enhanced T N . Moreover, the molecular orbital diagram shows that the weak Sn–Sn bond can be squeezed under pressure, acting as a compression buffer to stabilize the structure.  more » « less
Award ID(s):
1832967
NSF-PAR ID:
10105335
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
48
Issue:
16
ISSN:
1477-9226
Page Range / eLocation ID:
5327 to 5334
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a comprehensive study of the inhomogeneous mixed-valence compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain151Eu synchrotron Mössbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. Electrical transport measurements show that the antiferromagnetic ordering temperature,TN, increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19 GPa and plateaus between ~19 and ~29 GPa after which no anomaly associated withTNis detected. A pressure-induced first-order structural transition from cubic to tetragonal is observed, with a rather broad coexistence region (~20 GPa to ~30 GPa) that corresponds to theTNplateau. Mössbauer spectroscopy measurements show a clear valence transition from approximately 50:50 Eu2+:Eu3+to fully Eu3+at ~28 GPa, consistent with the vanishing of the magnetic order at the same pressure. X-ray absorption data show a transition to a fully trivalent state at a similar pressure. Our results show that pressure first greatly enhancesTN, most likely via enhanced hybridization between the Eu 4fstates and the conduction band, and then, second, causes a structural phase transition that coincides with the conversion of the europium to a fully trivalent state.

     
    more » « less
  2. A novel antiferromagnetic semiconductor, Eu 3 Sn 2 P 4 , has been discovered. Single crystals of Eu 3 Sn 2 P 4 were prepared using the Sn self-flux method. The crystal structure determined by single crystal X-ray diffraction shows that Eu 3 Sn 2 P 4 crystallizes in the orthorhombic structure with the space group Cmca (Pearson Symbol, oP 216). Six Sn–Sn dimers connected by P atoms form a Sn 12 P 24 crown-shaped cluster with a Eu atom located in the center. Magnetization measurements indicate that the system orders antiferromagnetically below a T N ∼14 K at a low field and undergoes a metamagnetic transition at a high field when T < T N . The effective magnetic moment is 7.41(3) μ B per Eu, corresponding to Eu 2+ . The electric resistivity reveals a non-monotonic temperature dependence with non-metallic behavior below ∼60 K, consistent with the band structure calculations. By fitting the data using the thermally activated resistivity formula, we estimate the energy gap to be ∼0.14 eV. Below T N , the resistivity tends to saturate, suggesting the reduction of charge-spin scattering. 
    more » « less
  3. Abstract High pressure is an effective tool to induce exotic quantum phenomena in magnetic topological insulators by controlling the interplay of magnetic order and topological state. This work presents a comprehensive high-pressure study of the crystal structure and magnetic ground state up to 62 GPa in an intrinsic topological magnet EuSn 2 P 2 . With a combination of high resolution X-ray diffraction, 151 Eu synchrotron Mössbauer spectroscopy, X-ray absorption spectroscopy, molecular orbital calculations, and electronic band structure calculations, it has been revealed that pressure drives EuSn 2 P 2 from a rhombohedral crystal to an amorphous phase at 36 GPa accompanied by a fourfold enhancement of magnetic ordering temperature. In the pressure-induced amorphous phase, Eu ions take an intermediate valence state. The drastic enhancement of magnetic ordering temperature from 30 K at ambient pressure to 130 K at 41.2 GPa resulting from Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions likely attributes to the stronger Eu–Sn interaction at high pressure. These rich results demonstrate that EuSn 2 P 2 is an ideal platform to study the correlation of the enhanced RKKY interactions, disordered lattice, intermediate valence, and topological state. 
    more » « less
  4. An emerging class of superhard materials for extreme environment applications are compounds formed by heavy transition metals with light elements. In this work, ultrahigh pressure experiments on transition metal rhenium diboride (ReB2) were carried out in a diamond anvil cell under isothermal and non-hydrostatic compression. Two independent high-pressure experiments were carried out on ReB2 for the first time up to a pressure of 241 GPa (volume compression V/V0 = 0.731 ± 0.004), with platinum as an internal pressure standard in X-ray diffraction studies. The hexagonal phase of ReB2 was stable under highest pressure, and the anisotropy between the a-axis and c-axis compression increases with pressure to 241 GPa. The measured equation of state (EOS) above the yield stress of ReB2 is well represented by the bulk modulus K0 = 364 GPa and its first pressure derivative K0´ = 3.53. Corresponding density-functional-theory (DFT) simulations of the EOS and elastic constants agreed well with the experimental data. DFT results indicated that ReB2 becomes more ductile with enhanced tendency towards metallic bonding under compression. The DFT results also showed strong crystal anisotropy up to the maximum pressure under study. The pressure-enhanced electron density distribution along the Re and B bond direction renders the material highly incompressible along the c-axis. Our study helps to establish the fundamental basis for anisotropic compression of ReB2 under ultrahigh pressures. 
    more » « less
  5. The high-pressure structure and stability of the calcic amphibole tremolite (Ca2Mg5Si8O22(OH)2) was investigated to ~40 GPa at 300 K by single-crystal X-ray diffraction using synchrotron radiation. C2/m symmetry tremolite displays a broader metastability range than previously studied clinoamphiboles, exhibiting no first-order phase transition up to 40 GPa. Axial parameter ratios a/b and a/c, in conjunction with finite strain versus normalized pressure trends, indicate that changes in compressional behavior occur at pressures of ~5 and ~20 GPa. An analysis of the finite strain trends, using third-order Birch-Murnaghan equations of state, resulted in bulk moduli (𝐾) of 72(7), 77(2), and 61(1) GPa for the compressional regimes from 0-5 GPa (regime I), 5-20 GPa (II), and above 20 GPa (III), respectively, and accompanying pressure-derivatives of the bulk moduli (𝐾′) of 8.6(42), 6.0(3), and 10.0(2). The results are consistent with first-principle theoretical calculations of tremolite elasticity. The axial compressibility ratios of tremolite, determined as 𝛽a : 𝛽b : 𝛽c = 2.22:1.0:0.78 (regime I), 2.12:1.0:0.96 (II), and 1.03:1.0:0.75 (III), demonstrate a substantial reduction of the compressional anisotropy of tremolite at high pressures, which is a notable contrast with the increasingly anisotropic compressibility observed in the high-pressure polymorphs of the clinoamphibole grunerite. The shift in compression-regime at 5 GPa (I-II) transition is ascribed to stiffening along the crystallographic a-axis corresponding to closure of the vacant A-site in the structure, and a shift in the topology of the a-oriented surfaces of the structural I-beam from concave to convex. The II-III regime shift at 20 GPa corresponds to an increasing rate of compaction of the Ca-polyhedra and increased distortion of the Mg-octahedral sites, processes which dictate compaction in both high-pressure compression-regimes. Bond-valence analyses of the tremolite structure under pressure show dramatic overbonding of the Ca-cations (75% at 30 GPa), with significant Mg-cation overbonding as well (40%). These imply that tremolite’s notable metastability range hinges on the calcium cation’s bonding environment. The 8-fold coordinated Ca-polyhedron accommodates significant compaction under pressure, while the geometry of the Ca-O polyhedron becomes increasingly regular and inhibits the reorientation of the tetrahedral chains that generate phase transitions observed in other clinoamphiboles. Peak/background ratio of diffraction data collected above 40 GPa and our equation of state determination of bulk moduli and compressibilities of tremolite in regime III, in concert with the results of our previous Raman study, suggest that C2/m tremolite may be approaching the limit of its metastability above 40 GPa. Our results have relevance for both the metastable compaction of tremolite during impact events, and for possible metastable persistence of tremolite within cold subduction zones within the Earth. 
    more » « less