skip to main content


Title: A note on a Newtonian approximation in a Schwarzschild background
We consider a (very) simple version of the restricted three body problem in general relativity. The background geometry is given by a Schwarzschild solution governing the motion of two bodies of masses $m_1$ and $m_2$. We assume that corrections to the trajectory of the body of mass $m_1$ due to the presence of the mass $m_2$ are given by a Newtonian approximation where Poisson's equation is solved with respect to the Schwarzschild background geometry. Under these assumptions, we derive approximate equations of motion for the corrections to the trajectory of the body of mass $m_1$.  more » « less
Award ID(s):
1812826
NSF-PAR ID:
10105371
Author(s) / Creator(s):
;
Date Published:
Journal Name:
African physical reviews
Volume:
13
Issue:
0
ISSN:
1970-4097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We construct an effective four-dimensional string-corrected black hole (4D SCBH) by rescaling the string coupling parameter in a D-dimensional Callan–Myers–Perry black hole. From the theoretical point of view, the most interesting findings are that the string corrections coincide with the so-called generalized uncertainty principle (GUP) corrections to black hole solutions, Bekenstein–Hawking entropy acquires logarithmic corrections, and that there exists a critical value of the coupling parameter for which the black hole temperature vanishes. We also find that, due to the string corrections, the nature of the central singularity may be altered from space-like to time-like singularity. In addition, we study the possibility of testing such a black hole with astrophysical observations. Since the dilaton field does not decouple from the metric, it is not a priori clear that the resulting 4D SCBH offers only small corrections to the Schwarzschild black hole. We used motion of the S2 star around the black hole at the center of our galaxy to constrain the parameters (the string coupling parameter and ADM mass) of the 4D SCBH. To test the weak gravity regime, we calculate the deflection angle in this geometry and apply it to gravitational lensing. To test the strong field regime, we calculate the black hole shadow radius. While we find that the observables change as we change the string coupling parameter, the magnitude of the change is too small to distinguish it from the Schwarzschild black hole. With the current precision, to the leading order terms, the 4D SCBH cannot be distinguished from the Schwarzschild black hole. 
    more » « less
  2. Safe quadrupedal navigation through unknown environments is a challenging problem. This paper proposes a hierarchical vision-based planning framework (GPF-BG) integrating our previous Global Path Follower (GPF) navigation system and a gap-based local planner using Bézier curves, so called B ézier Gap (BG). This BG-based trajectory synthesis can generate smooth trajectories and guarantee safety for point-mass robots. With a gap analysis extension based on non-point, rectangular geometry, safety is guaranteed for an idealized quadrupedal motion model and significantly improved for an actual quadrupedal robot model. Stabilized perception space improves performance under oscillatory internal body motions that impact sensing. Simulation-based and real experiments under different benchmarking configurations test safe navigation performance. GPF-BG has the best safety outcomes across all experiments. 
    more » « less
  3. Abstract We use deep Hubble Space Telescope imaging to derive a distance to the Virgo Cluster ultradiffuse galaxy (UDG) VCC 615 using the tip of the red giant branch (TRGB) distance estimator. We detect 5023 stars within the galaxy, down to a 50% completeness limit of F814W ≈ 28.0, using counts in the surrounding field to correct for contamination due to background sources and Virgo intracluster stars. We derive an extinction-corrected F814W tip magnitude of m tip , 0 = 27.19 − 0.05 + 0.07 , yielding a distance of d = 17.7 − 0.4 + 0.6 Mpc. This places VCC 615 on the far side of the Virgo Cluster ( d Virgo = 16.5 Mpc), at a Virgocentric distance of 1.3 Mpc and near the virial radius of the main body of Virgo. Coupling this distance with the galaxy’s observed radial velocity, we find that VCC 615 is on an outbound trajectory, having survived a recent passage through the inner parts of the cluster. Indeed, our orbit modeling gives a 50% chance the galaxy passed inside the Virgo core ( r < 620 kpc) within the past gigayear, although very close passages directly through the cluster center ( r < 200 kpc) are unlikely. Given VCC 615's undisturbed morphology, we argue that the galaxy has experienced no recent and sudden transformation into a UDG due to the cluster potential, but rather is a long-lived UDG whose relatively wide orbit and large dynamical mass protect it from stripping and destruction by the Virgo cluster tides. Finally, we also describe the serendipitous discovery of a nearby Virgo dwarf galaxy projected 90″ (7.2 kpc) away from VCC 615. 
    more » « less
  4. Background:

    Athletes, especially female athletes, experience high rates of tibial bone stress injuries (BSIs). Knowledge of tibial loads during walking and running is needed to understand injury mechanisms and design safe running progression programs.

    Purpose:

    To examine tibial loads as a function of gait speed in male and female runners.

    Study Design:

    Controlled laboratory study.

    Methods:

    Kinematic and kinetic data were collected on 40 recreational runners (20 female, 20 male) during 4 instrumented gait speed conditions on a treadmill (walk, preferred run, slow run, fast run). Musculoskeletal modeling, using participant-specific magnetic resonance imaging and motion data, was used to estimate tibial stress. Peak tibial stress and stress-time impulse were analyzed using 2-factor multivariate analyses of variance (speed*sex) and post hoc comparisons (α = .05). Bone geometry and tibial forces and moments were examined.

    Results:

    Peak compression was influenced by speed ( P < .001); increasing speed generally increased tibial compression in both sexes. Women displayed greater increases in peak tension ( P = .001) and shear ( P < .001) than men when transitioning from walking to running. Further, women displayed greater peak tibial stress overall ( P < .001). Compressive and tensile stress-time impulse varied by speed ( P < .001) and sex ( P = .006); impulse was lower during running than walking and greater in women. A shear stress-time impulse interaction ( P < .001) indicated that women displayed greater impulse relative to men when changing from a walk to a run. Compared with men, women displayed smaller tibiae ( P < .001) and disproportionately lower tibial forces ( P≤ .001-.035).

    Conclusion:

    Peak tibial stress increased with gait speed, with a 2-fold increase in running relative to walking. Women displayed greater tibial stress than men and greater increases in stress when shifting from walking to running. Sex differences appear to be the result of smaller bone geometry in women and tibial forces that were not proportionately lower, given the womens’ smaller stature and lower mass relative to men.

    Clinical Relevance:

    These results may inform interventions to regulate running-related training loads and highlight a need to increase bone strength in women. Lower relative bone strength in women may contribute to a sex bias in tibial BSIs, and female runners may benefit from a slower progression when initiating a running program.

     
    more » « less
  5. Abstract

    Bio-inspired flying robots (BIFRs) which fly by flapping their wings experience continuously oscillating aerodynamic forces. These oscillations in the driving force cause vibrations in the motion of the body around the mean trajectory. In other words, a hovering BIFR does not remain fixed in space; instead, it undergoes oscillatory motion in almost all directions around the stationary point. These oscillations affect the aerodynamic performance of the flier. Assessing the effect of these oscillations, particularly on thrust generation in two-winged and four-winged BIFRs, is the main objective of this work. To achieve such a goal, two experimental setups were considered to measure the average thrust for the two BIFRs. The average thrust is measured over the flapping cycle of the BIFRs. In the first experimental setup, the BIFR is installed at the end of a pendulum rod, in place of the pendulum mass. While flapping, the model creates a thrust force that raises the model along the circular trajectory of the pendulum mass to a certain angular position, which is an equilibrium point and is also stable. Measuring the weight of the BIFR and the equilibrium angle it obtains, it is straightforward to estimate the average thrust, by moment balance about the pendulum hinge. This pendulum setup allows the BIFR model to freely oscillate back and forth along the circular trajectory about the equilibrium position. As such, the estimated average thrust includes the effects of these self-induced vibrations. In contrast, we use another setup with a load cell to measure thrust where the model is completely fixed. The thrust measurement revealed that the load cell or the fixed test leads to a higher thrust than the pendulum or the oscillatory test for the two-winged model, showing the opposite behavior for the four-winged model. That is, self-induced vibrations have different effects on the two BIFR models. We felt that this observation is worth further investigation. It is important to mention that aerodynamic mechanisms for thrust generation in the two and four-winged models are different. A two-winged BIFR generates thrust through traditional flapping mechanisms whereas a four-winged model enjoys a clapping effect, which results from wing-wing interaction. In the present work, we use a motion capture system, aerodynamic modeling, and flow visualization to study the underlying physics of the observed different behaviors of the two flapping models. The study revealed that the interaction of the vortices with the flapping wing robots may play a role in the observed aerodynamic behavior of the two BIFRs.

     
    more » « less