We propose a new model of the spherical symmetric quantum black hole in the reduced phase space formulation. We deparametrize gravity by coupling to the Gaussian dust which provides the material coordinates. The foliation by dust coordinates covers both the interior and exterior of the black hole. After the spherical symmetry reduction, our model is a 1 + 1 dimensional field theory containing infinitely many degrees of freedom. The effective dynamics of the quantum black hole is generated by an improved physical Hamiltonian
 Award ID(s):
 2014021
 NSFPAR ID:
 10339844
 Date Published:
 Journal Name:
 Universe
 Volume:
 8
 Issue:
 3
 ISSN:
 22181997
 Page Range / eLocation ID:
 194
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract H _{Δ}. The holonomy correction inH _{Δ}is implemented by the scheme regularization with a Planckian area scale Δ (which often chosen as the minimal area gap in loop quantum gravity). The effective dynamics recovers the semiclassical Schwarzschild geometry at low curvature regime and resolves the black hole singularity with Planckian curvature, e.g. $\overline{\mu}$R _{μνρσ}R ^{μνρσ}∼ 1/Δ^{2}. Our model predicts that the evolution of the black hole at late time reaches the charged Nariai geometry dS_{2}×S ^{2}with Planckian radii . The Nariai geometry is stable under linear perturbations but may be unstable by nonperturbative quantum effects. Our model suggests the existence of quantum tunneling of the Nariai geometry and a scenario of blackholetowhitehole transition. $\sim \sqrt{\mathrm{\Delta}}$ 
The image of a supermassive black hole surrounded by an opticallythin, radiativelyinefficient accretion flow, like that observed with the Event Horizon Telescope, is characterized by a bright ring of emission surrounding the blackhole shadow. In the Kerr spacetime this bright ring, when narrow, closely traces the boundary of the shadow and can, with appropriate calibration, serve as its proxy. The present paper expands the validity of this statement by considering two particular spacetime geometries: a solution to the field equations of a modified gravity theory and another that parametrically deviates from Kerr but recovers the Kerr spacetime when its deviation parameters vanish. A covariant, axisymmetric analytic model of the accretion flow based on conservation laws and spanning a broad range of plasma conditions is utilized to calculate synthetic nonKerr blackhole images, which are then analysed and characterized. We find that in all spacetimes: (i) it is the gravitationallylensed unstable photon orbit that plays the critical role in establishing the diameter of the rings observed in blackhole images, not the event horizon or the innermost stable circular orbit, (ii) bright rings in these images scale in size with, and encompass, the boundaries of the blackhole shadows, even when deviating significantly from Kerr, and (iii) uncertainties in the physical properties of the accreting plasma introduce subdominant corrections to the relation between the diameter of the image and the diameter of the blackhole shadow. These results provide theoretical justification for using blackhole images to probe and test the spacetimes of supermassive black holes.more » « less

Abstract Horizonscale images of black holes (BHs) and their shadows have opened an unprecedented window onto tests of gravity and fundamental physics in the strongfield regime. We consider a wide range of wellmotivated deviations from classical general relativity (GR) BH solutions, and constrain them using the Event Horizon Telescope (EHT) observations of Sagittarius A
(Sgr A ${}^{\ast}$ ), connecting the size of the bright ring of emission to that of the underlying BH shadow and exploiting highprecision measurements of Sgr A ${}^{\ast}$ ’s masstodistance ratio. The scenarios we consider, and whose fundamental parameters we constrain, include various regular BHs, stringinspired spacetimes, violations of the nohair theorem driven by additional fields, alternative theories of gravity, novel fundamental physics frameworks, and BH mimickers including wellmotivated wormhole and naked singularity spacetimes. We demonstrate that the EHT image of Sgr A ${}^{\ast}$ places particularly stringent constraints on models predicting a shadow size larger than that of a Schwarzschild BH of a given mass, with the resulting limits in some cases surpassing cosmological ones. Our results are among the first tests of fundamental physics from the shadow of Sgr A ${}^{\ast}$ and, while the latter appears to be in excellent agreement with the predictions of GR, we have shown that a number of wellmotivated alternative scenarios, including BH mimickers, are far from being ruled out at present. ${}^{\ast}$ 
BACKGROUND Landau’s Fermi liquid theory provides the bedrock on which our understanding of metals has developed over the past 65 years. Its basic premise is that the electrons transporting a current can be treated as “quasiparticles”—electronlike particles whose effective mass has been modified, typically through interactions with the atomic lattice and/or other electrons. For a long time, it seemed as though Landau’s theory could account for all the manybody interactions that exist inside a metal, even in the socalled heavy fermion systems whose quasiparticle mass can be up to three orders of magnitude heavier than the electron’s mass. Fermi liquid theory also lay the foundation for the first successful microscopic theory of superconductivity. In the past few decades, a number of new metallic systems have been discovered that violate this paradigm. The violation is most evident in the way that the electrical resistivity changes with temperature or magnetic field. In normal metals in which electrons are the charge carriers, the resistivity increases with increasing temperature but saturates, both at low temperatures (because the quantized lattice vibrations are frozen out) and at high temperatures (because the electron mean free path dips below the smallest scattering pathway defined by the lattice spacing). In “strange metals,” by contrast, no saturation occurs, implying that the quasiparticle description breaks down and electrons are no longer the primary charge carriers. When the particle picture breaks down, no local entity carries the current. ADVANCES A new classification of metallicity is not a purely academic exercise, however, as strange metals tend to be the hightemperature phase of some of the best superconductors available. Understanding hightemperature superconductivity stands as a grand challenge because its resolution is fundamentally rooted in the physics of strong interactions, a regime where electrons no longer move independently. Precisely what new emergent phenomena one obtains from the interactions that drive the electron dynamics above the temperature where they superconduct is one of the most urgent problems in physics, attracting the attention of condensed matter physicists as well as string theorists. One thing is clear in this regime: The particle picture breaks down. As particles and locality are typically related, the strange metal raises the distinct possibility that its resolution must abandon the basic building blocks of quantum theory. We review the experimental and theoretical studies that have shaped our current understanding of the emergent strongly interacting physics realized in a host of strange metals, with a special focus on their posterchild: the copper oxide hightemperature superconductors. Experiments are highlighted that attempt to link the phenomenon of nonsaturating resistivity to parameterfree universal physics. A key experimental observation in such materials is that removing a single electron affects the spectrum at all energy scales, not just the lowenergy sector as in a Fermi liquid. It is observations of this sort that reinforce the breakdown of the singleparticle concept. On the theoretical side, the modern accounts that borrow from the conjecture that strongly interacting physics is really about gravity are discussed extensively, as they have been the most successful thus far in describing the range of physics displayed by strange metals. The foray into gravity models is not just a pipe dream because in such constructions, no particle interpretation is given to the charge density. As the breakdown of the independentparticle picture is central to the strange metal, the gravity constructions are a natural tool to make progress on this problem. Possible experimental tests of this conjecture are also outlined. OUTLOOK As more strange metals emerge and their physical properties come under the scrutiny of the vast array of experimental probes now at our disposal, their mysteries will be revealed and their commonalities and differences cataloged. In so doing, we should be able to understand the universality of strange metal physics. At the same time, the anomalous nature of their superconducting state will become apparent, offering us hope that a new paradigm of pairing of nonquasiparticles will also be formalized. The correlation between the strength of the linearintemperature resistivity in cuprate strange metals and their corresponding superfluid density, as revealed here, certainly hints at a fundamental link between the nature of strange metallicity and superconductivity in the cuprates. And as the gravityinspired theories mature and overcome the challenge of projecting their powerful mathematical machinery onto the appropriate crystallographic lattice, so too will we hope to build with confidence a complete theory of strange metals as they emerge from the horizon of a black hole. Curved spacetime with a black hole in its interior and the strange metal arising on the boundary. This picture is based on the string theory gaugegravity duality conjecture by J. Maldacena, which states that some strongly interacting quantum mechanical systems can be studied by replacing them with classical gravity in a spacetime in one higher dimension. The conjecture was made possible by thinking about some of the fundamental components of string theory, namely Dbranes (the horseshoeshaped object terminating on a flat surface in the interior of the spacetime). A key surprise of this conjecture is that aspects of condensed matter systems in which the electrons interact strongly—such as strange metals—can be studied using gravity.more » « less

Abstract Gravitational waves emitted by black hole binary inspiral and mergers enable unprecedented strongfield tests of gravity, requiring accurate theoretical modeling of the expected signals in extensions of general relativity. In this paper we model the gravitational wave emission of inspiralling binaries in scalar Gauss–Bonnet gravity theories. Going beyond the weakcoupling approximation, we derive the gravitational waveform to relative first postNewtonian order beyond the quadrupole approximation and calculate new contributions from nonlinear curvature terms. We also compute the scalar waveform to relative 0.5PN order beyond the leading −0.5PN order terms. We quantify the effect of these terms and provide readytoimplement gravitational wave and scalar waveforms as well as the Fourier domain phase for quasicircular binaries. We also perform a parameter space study, which indicates that the values of black hole scalar charges play a crucial role in the detectability of deviation from general relativity. We also compare the scalar waveforms to numerical relativity simulations to assess the impact of the relativistic corrections to the scalar radiation. Our results provide important foundations for future precision tests of gravity.more » « less