skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A remark on “Study of a Leslie-Gower predator-prey model with prey defense and mutual interference of predators” [Chaos, Solitons & Fractals 120 (2019) 1–16]
Award ID(s):
1839993
PAR ID:
10105386
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chaos, Solitons & Fractals
Volume:
123
Issue:
C
ISSN:
0960-0779
Page Range / eLocation ID:
201 to 205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we propose a predator-prey system with a Holling type Ⅱ functional response and study its dynamics when the prey exhibits vigilance behavior to avoid predation and predators exhibit cooperative hunting. We provide conditions for existence and the local and global stability of equilibria. We carry out detailed bifurcation analysis and find the system to experience Hopf, saddle-node, and transcritical bifurcations. Our results show that increased prey vigilance can stabilize the system, but when vigilance levels are too high, it causes a decrease in the population density of prey and leads to extinction. When hunting cooperation is intensive, it can destabilize the system, and can also induce bi-stability phenomenon. Furthermore, it can reduce the population density of both prey and predators and also change the stability of a coexistence state. We provide numerical experiments to validate our theoretical results and discuss ecological implications. 
    more » « less